• 分类和回归


    引自:https://www.cnblogs.com/zhoubindut/p/12142186.html

    上篇文章中,我们就机器学习的相关基础概念进行了阐述,包括机器学习的基本概念以及机器学习的分类。不了解的童鞋可以看一下补补课,机器学习系列(一)——基础概念及分类
    分类和回归问题作为典型的机器学习问题,一直困扰了我很久,在查了好多文献和推文后,整理下来下面的文档,希望可以帮助大家,更加细致全面的了解这两种算法。

    ​ 分类算法和回归算法的区别:

    ​ 分类算法和回归算法是对真实世界不同建模的方法。分类模型是认为模型的输出是离散的,例如大自然的生物被划分为不同的种类,是离散的。回归模型的输出是连续的,例如人的身高变化过程是一个连续过程,而不是离散的。

    ​ 因此,在实际建模过程时,采用分类模型还是回归模型,取决于你对任务(真实世界)的分析和理解。

    3 分类算法

    3.1 常用分类算法的优缺点?

    ​ 接下来首先介绍常用分类算法的优缺点,如表2-1所示。

    ​ 表2-1 常用分类算法的优缺点

     

    3.2 分类算法的评估方法

    ​ 分类评估方法主要功能是用来评估分类算法的好坏,而评估一个分类器算法的好坏又包括许多项指标。了解各种评估方法,在实际应用中选择正确的评估方法是十分重要的。

    • 几个常用术语
      ​ 这里首先介绍几个常见的模型评价术语,现在假设我们的分类目标只有两类,计为正例(positive)和负例(negative)分别是:

      1. True positives(TP): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数;
      2. False positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;
      3. False negatives(FN):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;
      4. True negatives(TN): 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。  ​
        四个术语组成混淆矩阵
        1)P=TP+FN表示实际为正例的样本个数。
        2)True、False描述的是分类器是否判断正确。
        3)Positive、Negative是分类器的分类结果,如果正例计为1、负例计为-1,即positive=1、negative=-1。用1表示True,-1表示False,那么实际的类标=TF*PN,TF为true或false,PN为positive或negative。
        4)例如True positives(TP)的实际类标=1*1=1为正例,False positives(FP)的实际类标=(-1)*1=-1为负例,False negatives(FN)的实际类标=(-1)*(-1)=1为正例,True negatives(TN)的实际类标=1*(-1)=-1为负例。
    • 评价指标

      1. 正确率(accuracy)
        正确率是我们最常见的评价指标,accuracy = (TP+TN)/(P+N)正确率是被分对的样本数在所有样本数中的占比,通常来说,正确率越高,分类器越好。
      2. 错误率(error rate)
        错误率则与正确率相反,描述被分类器错分的比例,error rate = (FP+FN)/(P+N),对某一个实例来说,分对与分错是互斥事件,所以accuracy =1 - error rate。
      3. 灵敏度(sensitivity)
        sensitivity = TP/P,表示的是所有正例中被分对的比例,衡量了分类器对正例的识别能力
      4. 特异性(specificity)
        specificity = TN/N,表示的是所有负例中被分对的比例,衡量了分类器对负例的识别能力。
      5. 精度(precision)
        precision=TP/(TP+FP),精度是精确性的度量,表示被分为正例的示例中实际为正例的比例
      6. 召回率(recall)
        召回率是覆盖面的度量,度量有多个正例被分为正例,recall=TP/(TP+FN)=TP/P=sensitivity,可以看到召回率与灵敏度是一样的。
      7. 其他评价指标
        计算速度:分类器训练和预测需要的时间;评估速度的常用指标是每秒帧率(Frame Per Second,FPS),即每秒内可以处理的图片数量。当然要对比FPS,你需要在同一硬件上进行。另外也可以使用处理一张图片所需时间来评估检测速度,时间越短,速度越快。
        鲁棒性:处理缺失值和异常值的能力;
        可扩展性:处理大数据集的能力;
        可解释性:分类器的预测标准的可理解性,像决策树产生的规则就是很容易理解的,而神经网络的一堆参数就不好理解,我们只好把它看成一个黑盒子。
      8. 精度和召回率反映了分类器分类性能的两个方面。如果综合考虑查准率与查全率,可以得到新的评价指标F1-score,也称为综合分类率:F1=2×precision×recallprecision+recallF1=2×precision×recallprecision+recall。

      为了综合多个类别的分类情况,评测系统整体性能,经常采用的还有微平均F1(micro-averaging)和宏平均F1(macro-averaging )两种指标。

      (1)宏平均F1与微平均F1是以两种不同的平均方式求的全局F1指标。

      (2)宏平均F1的计算方法先对每个类别单独计算F1值,再取这些F1值的算术平均值作为全局指标。

      (3)微平均F1的计算方法是先累加计算各个类别的a、b、c、d的值,再由这些值求出F1值。

      (4)由两种平均F1的计算方式不难看出,宏平均F1平等对待每一个类别,所以它的值主要受到稀有类别的影响,而微平均F1平等考虑文档集中的每一个文档,所以它的值受到常见类别的影响比较大。

    • ROC曲线和PR曲线

      ROC曲线是(Receiver Operating Characteristic Curve,受试者工作特征曲线)的简称,是以灵敏度(真阳性率)为纵坐标,以1减去特异性(假阳性率)为横坐标绘制的性能评价曲线。可以将不同模型对同一数据集的ROC曲线绘制在同一笛卡尔坐标系中,ROC曲线越靠近左上角,说明其对应模型越可靠。也可以通过ROC曲线下面的面积(Area Under Curve, AUC)来评价模型,AUC越大,模型越可靠。

      PR曲线是Precision Recall Curve的简称,描述的是precision和recall之间的关系,以recall为横坐标,precision为纵坐标绘制的曲线。该曲线的所对应的面积AUC实际上是目标检测中常用的评价指标平均精度(Average Precision, AP)。AP越高,说明模型性能越好。 mAP 即 Mean Average Precision即平均AP值,是对多个验证集个体求平均AP值,作为 object dection中衡量检测精度的指标。

    图像目标检测的IOU是什么?

    IoU 作为目标检测算法性能 mAP 计算的一个非常重要的函数。IoU 的全称为交并比(Intersection over Union),通过这个名称我们大概可以猜到 IoU 的计算方法。IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值。

    3.3 正确率能很好的评估分类算法吗

    ​ 不同算法有不同特点,在不同数据集上有不同的表现效果,根据特定的任务选择不同的算法。如何评价分类算法的好坏,要做具体任务具体分析。对于决策树,主要用正确率去评估,但是其他算法,只用正确率能很好的评估吗?
    ​ 答案是否定的。
    ​ 正确率确实是一个很直观很好的评价指标,但是有时候正确率高并不能完全代表一个算法就好。比如对某个地区进行地震预测,地震分类属性分为0:不发生地震、1发生地震。我们都知道,不发生的概率是极大的,对于分类器而言,如果分类器不加思考,对每一个测试样例的类别都划分为0,达到99%的正确率,但是,问题来了,如果真的发生地震时,这个分类器毫无察觉,那带来的后果将是巨大的。很显然,99%正确率的分类器并不是我们想要的。出现这种现象的原因主要是数据分布不均衡,类别为1的数据太少,错分了类别1但达到了很高的正确率缺忽视了研究者本身最为关注的情况。

    3.4 什么样的分类器是最好的

    ​ 对某一个任务,某个具体的分类器不可能同时满足或提高所有上面介绍的指标。
    ​ 如果一个分类器能正确分对所有的实例,那么各项指标都已经达到最优,但这样的分类器往往不存在。比如之前说的地震预测,既然不能百分百预测地震的发生,但实际情况中能容忍一定程度的误报。假设在1000次预测中,共有5次预测发生了地震,真实情况中有一次发生了地震,其他4次则为误报。正确率由原来的999/1000=99.9下降为996/1000=99.6。召回率由0/1=0%上升为1/1=100%。对此解释为,虽然预测失误了4次,但真的地震发生前,分类器能预测对,没有错过,这样的分类器实际意义更为重大,正是我们想要的。在这种情况下,在一定正确率前提下,要求分类器的召回率尽量高。

    4 逻辑回归

    4.1 回归划分

    广义线性模型家族里,依据因变量不同,可以有如下划分:

    (1)如果是连续的,就是多重线性回归

    (2)如果是二项分布,就是逻辑回归

    (3)如果是泊松(Poisson)分布,就是泊松回归

    (4)如果是负二项分布,就是负二项回归

    (5)逻辑回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最常用的就是二分类的逻辑回归。

    4.2 逻辑回归适用性

    逻辑回归可用于以下几个方面:

    (1)用于概率预测。用于可能性预测时,得到的结果有可比性。比如根据模型进而预测在不同的自变量情况下,发生某病或某种情况的概率有多大。

    (2)用于分类。实际上跟预测有些类似,也是根据模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。进行分类时,仅需要设定一个阈值即可,可能性高于阈值是一类,低于阈值是另一类。

    (3)寻找危险因素。寻找某一疾病的危险因素等。

    (4)仅能用于线性问题。只有当目标和特征是线性关系时,才能用逻辑回归。在应用逻辑回归时注意两点:一是当知道模型是非线性时,不适用逻辑回归;二是当使用逻辑回归时,应注意选择和目标为线性关系的特征。

    (5)各特征之间不需要满足条件独立假设,但各个特征的贡献独立计算。

    4.3 逻辑回归与朴素贝叶斯有什么区别

    逻辑回归与朴素贝叶斯区别有以下几个方面:

    (1)逻辑回归是判别模型, 朴素贝叶斯是生成模型,所以生成和判别的所有区别它们都有

    (2)朴素贝叶斯属于贝叶斯,逻辑回归是最大似然,两种概率哲学间的区别

    (3)朴素贝叶斯需要条件独立假设。

    (4)逻辑回归需要求特征参数间是线性的。

     

  • 相关阅读:
    maven+spark2.0.0最大连通分量
    Eclipse+maven+scala2.11.8+spark2.0.0的环境部署
    杀死mapreduce
    filter-自己的理解
    JS变量声明提升
    js==运算符强制转换规则
    html 文字间距
    如你所见,我开始用微博
    vue数据模拟
    vue项目目录介绍
  • 原文地址:https://www.cnblogs.com/lyp1010/p/13411116.html
Copyright © 2020-2023  润新知