Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input:s = 7, nums = [2,3,1,2,4,3]
Output: 2 Explanation: the subarray[4,3]
has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
class Solution { public: int minSubArrayLen(int s, vector<int>& nums) { int sum=0,i=0,j=0,res=nums.size()+1; while(j<nums.size()) { sum+=nums[j++]; while(sum>=s) { sum-=nums[i++]; res=min(res,j-i+1); } } return res>nums.size()?0:res; } };
经典的双指针问题.开始用的是单层for循环, 调试了很久条件总是写的不对,实在不行看了答案, 发现用的是双层循环, 确实这个很简洁, 也是非常直接的逻辑