Verilog -- 改进的Booth乘法(基4)
@(verilog)
1. 背景
之前已经介绍过Booth乘法算法的基本原理以及代码,实际上之前的算法是基2的booth算法,每次对乘数编码都只考虑两位。因此在实际实现时往往效率不高,考虑最坏情况,使用基2的booth算法计算两个8位数据的乘法,除了编码复杂,计算时需要累加8个部分积,可见最坏情况跟普通阵列乘法器需要累加的部分积个数一样,因此代价不低。
改进的Booth乘法为了减少部分积的累加,现在基本很少采用基2的booth算法了,而是采用基4甚至基8的形式,下面主要介绍一下基4的booth算法。
2. 原理
跟基2的算法一样,假设A和B是乘数和被乘数,且有:
其中,(a_{-1})是末尾补的0,(a_{2n},a_{2n+1})是扩展的两位符号位。可以将乘数A表示为:
同样可以将两数的积表示为:
红色部分即为基4booth的编码方式。
3. 算法实现
有了公式就可以比较方便地推导算法步骤了,首先给出基4booth的编码表:
乘数位 ((a_{2k-1}+a_{2k}-2a_{2k+1})) | 编码操作 |
---|---|
000 | 0 |
001 | +B |
010 | +B |
011 | +2B |
100 | -2B |
101 | -B |
110 | -B |
111 | 0 |
所有操作过后都会移位两次。
示例:
(A = -7,B = -3)
首先,计算编码需要的操作数:
(+B = 1111 1101)
(-B = 0000 0011)
(+2B = 1111 1010)
(-2B = 0000 0110)
下面对(A)进行编码:
(A => (11) 1001 (0)=> (111) (100) (010)=> (0) (-2X) (+X))
计算过程:
+ 1111 1101 +B
+ 0001 10 -2B << <<
-----------
= 0001 0101 = 21
可以发现,对于8bit的乘法,基4的booth算法最多只需要计算4个部分积的累加,极大简化了求和逻辑。
4. Verilog 代码
verilog代码参考的是fanhu大神写的,链接: https://pan.baidu.com/s/1bR0SK0NeeaenLC73E1kKNg 提取码: 4kat
下面的代码针对上面的做了部分修改。
`timescale 1ns/1ps
module booth_radix4 #(
parameter WIDTH_M = 8,
parameter WIDTH_R = 8
)(
input clk,
input rstn,
input vld_in,
input [WIDTH_M-1:0] multiplicand,
input [WIDTH_R-1:0] multiplier,
output [WIDTH_M+WIDTH_R-1:0] mul_out,
output reg done
);
parameter IDLE = 2'b00,
ADD = 2'b01,
SHIFT = 2'b11,
OUTPUT = 2'b10;
reg [1:0] current_state, next_state;
reg [WIDTH_M+WIDTH_R+2:0] add1;
reg [WIDTH_M+WIDTH_R+2:0] sub1;
reg [WIDTH_M+WIDTH_R+2:0] add_x2;
reg [WIDTH_M+WIDTH_R+2:0] sub_x2;
reg [WIDTH_M+WIDTH_R+2:0] p_dct;
reg [WIDTH_R-1:0] count;
always @(posedge clk or negedge rstn)
if(!rstn) current_state = IDLE;
else if (!vld_in) current_state = IDLE;
else current_state <= next_state;
always @* begin
next_state = 2'bx;
case (current_state)
IDLE : if (vld_in) next_state = ADD;
else next_state = IDLE;
ADD : next_state = SHIFT ;
SHIFT : if (count==WIDTH_R/2) next_state = OUTPUT;
else next_state = ADD;
OUTPUT : next_state = IDLE;
default: next_state = IDLE;
endcase
end
always @(posedge clk or negedge rstn) begin
if(!rstn) begin
{add1,sub1,add_x2,sub_x2,p_dct,count,done} <= 0;
end else begin
case(current_state)
IDLE: begin
add1 <= {{2{multiplicand[WIDTH_R-1]}},multiplicand,{WIDTH_R+1{1'b0}}};
sub1 <= {-{{2{multiplicand[WIDTH_R-1]}},multiplicand},{WIDTH_R+1{1'b0}}};
add_x2 <= {{multiplicand[WIDTH_M-1],multiplicand,1'b0},{WIDTH_R+1{1'b0}}};
sub_x2 <= {-{multiplicand[WIDTH_M-1],multiplicand,1'b0},{WIDTH_R+1{1'b0}}};
p_dct <= {{WIDTH_M+1{1'b0}},multiplier,1'b0} ;
count <= 0;
done <= 0;
end
ADD:begin
case(p_dct[2:0])
3'b000,3'b111: p_dct <= p_dct;
3'b001,3'b010: p_dct <= p_dct+add1;
3'b101,3'b110: p_dct <= p_dct+sub1;
3'b100: p_dct <= p_dct+sub_x2;
3'b011: p_dct <= p_dct+add_x2;
default: p_dct <= p_dct;
endcase
count <= count+1;
end
SHIFT:
p_dct <= {p_dct[WIDTH_M+WIDTH_R+2],p_dct[WIDTH_M+WIDTH_R+2],p_dct[WIDTH_M+WIDTH_R+2:2]};
OUTPUT:begin
done <= 1;
end
endcase
end
end
assign mul_out = p_dct[WIDTH_M+WIDTH_R:1];
endmodule
testbench:
`timescale 1ns/1ps
module booth_radix4_tb();
`define TEST_WIDTH 4
parameter WIDTH_M = `TEST_WIDTH;
parameter WIDTH_R = `TEST_WIDTH;
reg clk;
reg rstn;
reg vld_in;
reg [WIDTH_M-1:0] multiplicand;
reg [WIDTH_R-1:0] multiplier;
wire [WIDTH_M+WIDTH_R-1:0] mul_out;
wire done;
//输入 :要定义有符号和符号,输出:无要求
wire signed [`TEST_WIDTH-1:0] m1_in;
wire signed [`TEST_WIDTH-1:0] m2_in;
reg signed [2*`TEST_WIDTH-1:0] product_ref;
reg [2*`TEST_WIDTH-1:0] product_ref_u;
assign m1_in = multiplier[`TEST_WIDTH-1:0];
assign m2_in = multiplicand[`TEST_WIDTH-1:0];
always #1 clk = ~clk;
integer i,j;
integer num_good;
initial begin
clk = 0;
vld_in = 0;
multiplicand = 0;
multiplier = 0;
num_good = 0;
rstn = 1;
#4 rstn = 0; #2 rstn = 1;
repeat(2) @(posedge clk);
for (i = 0; i < (1<<`TEST_WIDTH); i = i + 1) begin
for (j = 0; j < (1<<`TEST_WIDTH); j = j + 1) begin
vld_in = 1;
wait (done == 0);
wait (done == 1);
product_ref=m1_in*m2_in;
product_ref_u=m1_in*m2_in;
if (product_ref != mul_out) begin
$display("multiplier = %d multiplicand = %d proudct =%d",m1_in,m2_in,mul_out);
@(posedge clk);
$stop;
end
else begin
num_good = num_good + 1;
end
multiplicand = multiplicand + 1;
end
multiplier = multiplier + 1;
end
$display("sim done. num good = %d",num_good);
$finish;
end
booth_radix4 #( .WIDTH_M ( WIDTH_M ),
.WIDTH_R ( WIDTH_R ))
U_BOOTH_RADIX4_0
( .clk ( clk ),
.rstn ( rstn ),
.vld_in ( vld_in ),
.multiplicand ( multiplicand ),
.multiplier ( multiplier ),
.mul_out ( mul_out ),
.done ( done ));
initial begin
$fsdbDumpvars();
$fsdbDumpMDA();
$dumpvars();
end
endmodule
仿真波形图:
首先num_good表示正确的计算数目,因为上面我只测试了4位宽度的所有有符号乘法,因此总的计算个数为16*16=256个,这边显示全部正确。
下面是波形图:
PS:跟之前写的基2的算法相比,这里如果位宽改为10,经过仿真得到的计算周期为12,周期几乎比基2减少了一半。(之前写的基2在计算10bit时需要21个周期)