证明:(1)我们可知球心所组成的点列$left{ {{x_n}} ight}_{n = 1}^infty $是基本列.事实上,当$m ge n$时,由$x in {B_m} subset {B_n}$得[dleft( {{x_m},{x_n}} ight) le {varepsilon _n}]由于${varepsilon _n} o 0$,则对任给$varepsilon > 0$,存在$N$,使得当$nge N$,有${varepsilon _n}<varepsilon$,于是当$m,nge N$时,有[dleft( {{x_m},{x_n}} ight) < varepsilon ]所以$left{ {{x_n}} ight}_{n = 1}^infty $是基本列
(2)由于空间$X$是完备的,则点列$left{ {{x_n}} ight}_{n = 1}^infty $收敛于$X$中的一点$x$,令$m o infty$,则由距离的连续性知[dleft( {x,{x_n}} ight) le {varepsilon _n}]所以$xin {B_n},n = 1,2, cdots $,即$x in igcaplimits_{n = 1}^infty {{B_n}} $
(3)假设还存在$X$中的点$y in igcaplimits_{n = 1}^infty {{B_n}} $,则[dleft( {y,{x_n}} ight) le {varepsilon _n}]令$n o infty$,则$dleft( {y,x} ight) = lim limits_{n o infty } dleft( {y,{x_n}} ight) = 0$,所以由度量空间的定义知$y=x$,即证