证明:我们易知,当$f=0$时,取$y=0$即可,因此只需证明$f e 0$时定理成立
若$f$为$X$上的非零连续线性泛函,则$M = left{ {x|fleft( x ight) = 0} ight}$为$X$的闭真子空间,从而由投影定理知,存在$u in Xackslash M$,以及存在${u_0} in M,z in {M^ ot }$,使得$z = u - {u_0}$,于是$z in {M^ ot }$且$z e 0$
由于$M cap {M^ ot } = left{ 0 ight}$,则$fleft( z ight) e 0$.对于任意的$xin X$,由$fleft( {x - frac{{fleft( x ight)}}{{fleft( z ight)}}z} ight) = 0$可知[x - frac{{fleft( x ight)}}{{fleft( z ight)}}z in M]故[left( {x - frac{{fleft( x ight)}}{{fleft( z ight)}}z,z} ight) = 0]所以有[fleft( x ight) = frac{{fleft( z ight)}}{{{{left| z ight|}^2}}}left( {x,z} ight) = left( {x,frac{{overline {fleft( z ight)} }}{{{{left| z ight|}^2}}}z} ight)]令$y = frac{{overline {fleft( z ight)} }}{{{{left| z ight|}^2}}}z$,则对任意的$xin X$,有$fleft( x ight) = left( {x,y} ight)$
假设还存在$y' in X$,使得$fleft( x ight) = left( {x,y'} ight)$对任意的$xin X$成立,则对于$y - y' in X$,有[fleft( {y - y'} ight) = left( {y - y',y} ight) = left( {y - y',y'} ight) = 0]因此有[{left| {y - y'} ight|^2} = left( {y - y',y - y'} ight) = 0]即${y = y'}$,所以$fleft( x ight) = left( {x,y} ight)$的表示是唯一的,并且此时有$left| f ight| = left| y ight|$