证明:考虑由$Z$与$x_0$张成的子空间$Z_1$,由于${x_0} e Z$,则$Z_1$中任一元素$x$可唯一地表示为[x = x' + t{x_0},x' in Z]令[gleft( x ight) = td = tdleft( {{x_0},Z} ight)]则$g$是$Z_1$上的线性泛函,且$gleft( {{x_0}} ight) = d$,当$x in Z$时,$g(x)=0$
下证$g$是$Z_1$上的有界泛函,事实上,由于[left| {gleft( x ight)} ight| = left| t ight|d = left| t ight|dleft( {{x_0},Z} ight) le left| t ight|left| {{x_0} + frac{{x'}}{t}} ight| = left| {x' + t{x_0}} ight| = left| x ight|]所以$g$是$Z_1$上的有界泛函,且$left| g ight| le 1$
另一方面,由$d=dleft( {{x_0},Z} ight) $知,存在$Z$中的点列${x_n}^prime $,使得[mathop {lim }limits_{n o infty } left| {{x_n}^prime - {x_0}} ight| = d]又由于[d = gleft( {{x_0}} ight) = gleft( {{x_0} - {x_n}^prime } ight) le left| g ight|left| {{x_0} - {x_n}^prime } ight|]令$n o infty $,则$left| g ight| ge 1$,所以有$left| g ight| =1$,最后由$f{Hahn-Banach}$泛函延拓定理,则命题得证