• 26565665


    $f引理:$设$int_a^{ + infty } {fleft( x ight)dx} $收敛,且${fleft( x ight)}$在$left[ {a,{ m{ + }}infty } ight)$单调,则$lim limits_{x o + infty } xfleft( x ight) = 0$,进而$lim limits_{x o + infty }fleft( x ight) = 0$
    $f证明$(1)不妨设${fleft( x ight)}$单调递减,则我们可以断言$fleft( x ight) ge 0$,否则存在${x_0} in left[ {a, + infty } ight)$,使得$fleft( {{x_0}} ight) < 0$,
    于是当$x > {x_0}$时,由${fleft( x ight)}$的单调性知
    egin{align*}int_a^x {fleft( t ight)dt} &= int_a^{{x_0}} {fleft( t ight)dt} + int_{{x_0}}^x {fleft( t ight)dt} \&le int_a^{{x_0}} {fleft( t ight)dt} + fleft( {{x_0}} ight)left( {x - {x_0}} ight) o- infty left( {x o+ infty } ight)end{align*}
    这与$int_a^{ + infty } {fleft( x ight)dx} $收敛矛盾,故$fleft( x ight) ge 0$

       (2)由于$int_a^{ + infty } {fleft( x ight)dx} $收敛,则由$f{Cauchy收敛准则}$知,对任给$varepsilon > 0$,存在正数$M>a$,使得当$x ,y> M$时,有
    [left| {int_x^y {fleft( t ight)dt} } ight| < frac{varepsilon }{2}]
    特别地,取$y=2x$,则由$f积分中值定理$知,存在$xi in left[ {x,2x} ight]$,使得[xfleft( xi ight) = int_x^{2x} {fleft( t ight)dt} < frac{varepsilon }{2}]
    从而由${fleft( x ight)}$单调递减及$fleft( x ight) ge 0$知[0 le 2xfleft( {2x} ight) le 2xfleft( xi ight) = 2int_x^{2x} {fleft( t ight)dt} < varepsilon ]
    所以我们有$lim limits_{x o + infty } xf(x) = 0$,进而由极限的定义即知$lim limits_{x o + infty }fleft( x ight) = 0$

    $f命题:$设$int_a^{ + infty } {fleft( x ight)dx} $收敛,且可微函数${fleft( x ight)}$在$left[ {a,{ m{ + }}infty } ight)$单调递减,则$int_a^{ + infty } {xf'left( x ight)dx} $收敛

    $f证明$  对任意的$x in left[ {a, + infty } ight)$,由$f分部积分法$知
    [int_a^x {tf'left( t ight)dt} = tfleft( t ight)left| {egin{array}{*{20}{c}}x\a
    end{array}} ight. - int_a^x {fleft( t ight)dt} ]
    而由$int_a^{ + infty } {fleft( t ight)dt} $收敛知$lim limits_{x o + infty } int_a^x {fleft( t ight)dt} $存在,又由引理知$lim limits_{x o + infty }xfleft( x ight) = 0$,所以有$lim limits_{x o + infty }int_a^x {tf'left( t ight)dt}$存在,从而由反常积分收敛的定义即证

  • 相关阅读:
    vue组件通信类型限制
    vue父子组件通信
    vue组件data必须是函数
    vue组件模块抽离
    vue局部组件语法糖
    leetcode刷题-47全排列2
    leetcode刷题-46全排列
    leetcode刷题-43字符串相乘
    leetcode刷题-40组合总和2
    leetcode刷题-39组合总和
  • 原文地址:https://www.cnblogs.com/ly758241/p/3787555.html
Copyright © 2020-2023  润新知