可逆阵
$f命题:$设$A$为$m imes n$矩阵,$B$为$n imes m$矩阵,若$E_n-BA$可逆,证明:$E_m-AB$可逆,并求其逆矩阵
$f命题:$设$A,B$均为$n$阶矩阵,且$A+B=AB$,则
(1)${left( {E - A} ight)^{ - 1}} = E - B$
(2)$AB=BA$
(3)$r(A)=r(B)$
$f命题:$
$f命题:$设$A$为$n$阶幂等阵$left( {{A^2} = A} ight)$,证明:$E+A$可逆,且${left( {E + A} ight)^{ - 1}} = E - frac{1}{2}A$
$f命题:$设$A$为$n$阶幂零阵$left( {{A^k} = 0,k in {N_ + }} ight)$,证明:$E-A$可逆,且${left( {E - A} ight)^{ - 1}} = E + A + {A^2} + cdots + {A^{k - 1}}$
$f命题:$设$A$为数域$F$上的$n$阶方阵$(n>2)$,试求${left( {{A^*}} ight)^*}$
$f命题:$设$A,B in {P^{n imes n}}$,则${left( {AB} ight)^*} = {B^*}{A^*}$
$f命题:$设$A$为$n$阶不可逆阵,则${A^*}$的$n$个特征值至少有$n-1$个为零且另一个非零特征值(如果存在)等于${A_{11}} + {A_{22}} + cdots + {A_{nn}}$
$f命题:$