• 关于分段估计思想的专题讨论


    $f命题:$设$fleft( x ight) in Cleft[ {0,1} ight]$,证明:$lim limits_{h o egin{array}{*{20}{c}}{{0^ + }} end{array}} int_0^1 {frac{h}{{{x^2} + {h^2}}}} fleft( x ight)dx = frac{pi }{2}fleft( 0 ight)$

    1   2

    $f命题:$设$forall [alpha ,eta ] subset left[ {0, + infty } ight),fleft( x ight) in R[alpha ,eta ]$,且$int_0^{ + infty } {fleft( x ight)dx} $收敛,则对于常数$a>1$成立[mathop {lim }limits_{y o egin{array}{*{20}{c}}{{0^ + }} end{array}} int_0^{ + infty } {{a^{ - xy}}fleft( x ight)dx} = int_0^{ + infty } {fleft( x ight)dx} ]

    1

    $f命题:$设$forall a in left( {0, + infty } ight),fleft( x ight) in Rleft[ {0,a} ight]$,且$mathop {lim }limits_{x o  + infty } fleft( x ight) = alpha $,则

    [mathop {lim }limits_{t o egin{array}{*{20}{c}}
    {{0^ + }}
    end{array}} tint_0^{ + infty } {{e^{ - tx}}fleft( x ight)dx} = alpha ]

    1

    $f命题:$设$forall left[ {a,b} ight] subset left( { - infty , + infty } ight),fleft( x ight) in Rleft[ {a,b} ight]$,且$int_{ - infty }^{ + infty } {left| {fleft( x ight)} ight|dx} $,则$Fleft( x ight) = int_{ - infty }^{ + infty } {fleft( x ight)cos left( {2pi tx} ight)dt} $在$left( { - infty , + infty } ight)$上一致连续

    1

    $f命题:$设$fleft( x ight) in Cleft[ {0, + infty } ight)$,且$int_0^{ + infty } {varphi left( x ight)dx} $绝对收敛,则[mathop {lim }limits_{n o infty } int_0^{sqrt n } {fleft( {frac{x}{n}} ight)varphi left( x ight)dx}  = fleft( 0 ight)int_0^{ + infty } {varphi left( x ight)dx} ]

    1

    $f命题:$

    附录

    $f(Tauber定理)$设幂级数$sumlimits_{n = 0}^infty  {{a_n}{x^n}}  = Sleft( x ight)$在$left( { - 1,1} ight)$上成立,若$lim limits_{x o egin{array}{*{20}{c}}{{1^ - }}end{array}} Sleft( x ight) = S$,且$lim limits_{n o infty } n{a_n} = 0$,则$sumlimits_{n = 0}^infty  {{a_n}}  = S$

    1

    $f(Riemman积分控制收敛定理)$设函数列$left{ {{f_n}left( x ight)} ight}$在$left[ {a, + infty } ight)$上内闭可积且一致收敛于$f(x)$,若存在函数$g(x)$,使得$left| {{f_n}left( x ight)} ight| le gleft( x ight)$对每个$x$与$n$都成立,且$int_a^{ + infty } {gleft( x ight)dx} $收敛,则[mathop {lim }limits_{n o infty } int_a^{ + infty } {{f_n}left( x ight)dx} { m{ = }}int_a^{ + infty } {fleft( x ight)dx} ]




  • 相关阅读:
    linux下导入、导出mysql 数据库命令
    MapReduce工作原理(简单实例)
    BloomFilter ——大规模数据处理利器
    huawei机试题目
    二叉树操作集锦
    表达式计算的中序转后序
    用 JavaScript 修改样式元素
    网页中的表单元素
    使用网络字体作为矢量图标
    CSS 的 appearance 属性
  • 原文地址:https://www.cnblogs.com/ly142857/p/3722304.html
Copyright © 2020-2023  润新知