$f命题:(Riemann-Lebesgue引理)$设函数$fleft( x ight)$在$left[ {a,b} ight]$上可积,则
[mathop {lim }limits_{lambda o { m{ + }}infty } int_a^b {fleft( x ight)sin lambda xdx} = 0]
$f命题:(Riemann-Lebesgue引理的推广)$ 设函数$fleft( x ight),gleft( x ight)$均在$left[ {a,b} ight]$上可积,且$gleft( x ight)$以正数$T$为周期,则[mathop {lim }limits_{lambda o { m{ + }}infty } int_a^b {fleft( x ight)gleft( {lambda x} ight)dx} = frac{1}{T}int_0^T {gleft( x ight)dx} int_a^b {fleft( x ight)dx} ]
参考答案
$f命题:$设$fleft( x ight),gleft( x ight) in Cleft( { - infty , + infty } ight)$,且对任意$x in left( { - infty , + infty } ight)$,有$gleft( {x + 1} ight) = gleft( x ight)$,则[mathop {lim }limits_{n o infty } int_0^1 {fleft( x ight)gleft( {nx} ight)dx} = int_0^1 {fleft( x ight)dx} int_0^1 {gleft( x ight)dx} ]
$f命题:$