• LRU算法


    Least recently used,最近最少使用

    最常见的实现是使用一个链表保存缓存数据,详细算法实现如下:

    1. 新数据插入到链表头部;

    2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部;

    3. 当链表满的时候,将链表尾部的数据丢弃。

     LRU-K

    2.1. 原理

    LRU-K中的K代表最近使用的次数,因此LRU可以认为是LRU-1。LRU-K的主要目的是为了解决LRU算法“缓存污染”的问题,其核心思想是将“最近使用过1次”的判断标准扩展为“最近使用过K次”。

    2.2. 实现

    相比LRU,LRU-K需要多维护一个队列,用于记录所有缓存数据被访问的历史。只有当数据的访问次数达到K次的时候,才将数据放入缓存。当需要淘汰数据时,LRU-K会淘汰第K次访问时间距当前时间最大的数据。详细实现如下:

    1. 数据第一次被访问,加入到访问历史列表;

    2. 如果数据在访问历史列表里后没有达到K次访问,则按照一定规则(FIFO,LRU)淘汰;

    3. 当访问历史队列中的数据访问次数达到K次后,将数据索引从历史队列删除,将数据移到缓存队列中,并缓存此数据,缓存队列重新按照时间排序;

    4. 缓存数据队列中被再次访问后,重新排序;

    5. 需要淘汰数据时,淘汰缓存队列中排在末尾的数据,即:淘汰“倒数第K次访问离现在最久”的数据。

    LRU-K具有LRU的优点,同时能够避免LRU的缺点,实际应用中LRU-2是综合各种因素后最优的选择,LRU-3或者更大的K值命中率会高,但适应性差,需要大量的数据访问才能将历史访问记录清除掉。

  • 相关阅读:
    判断广播是否已注册
    Android 之使用LocalBroadcastManager解决BroadcastReceiver安全问题
    Android BroadcastReceiver 注册和反注册
    关于Android TaskAffinity的那些事儿
    文件读取方法(FileHelpers) z
    FileHelpers 用法 z
    tdf sample
    打开文件
    async/await 异步编程
    使用Topshelf创建Windows服务
  • 原文地址:https://www.cnblogs.com/lx-1024/p/7601031.html
Copyright © 2020-2023  润新知