• P3338 [ZJOI2014]力 (FFT)


    题意:$$F(i)= sum_{j=0} ^{i - 1} frac{qi * qj}{(j - i)^{2}} - sum_{j = i + 1}^{n} frac{qi * qj}{(j - i)^{2}}$$
    求Fi/qi
    题解:可以分开来算 前面一坨 后面一坨

    [f(i) = qi ]

    [g(i)=frac{1}{i^2} ]

    [F(i) = sum_{j = 0}^{i - 1} f(i) * g(i - j) - sum_{j = i + 1}^{n} f(i) * g(j - i) ]

    前面已经可以算了 然后后面的g(j - i) = g(i - j) 套路的把f翻转一下

    [sum_{j = i + 1}^{n} f(n - j + 1) * g(j - i) = F(n + 1 - i) ]

    [然后就都可以卷了! ]

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const double PI = acos(-1.0);
    
    struct Complex {
        double x, y;
        Complex(double _x = 0.0, double _y = 0.0) {
            x = _x;
            y = _y;
        }
        Complex operator + (const Complex &b) const {
            return Complex(x + b.x, y + b.y);
        }
        Complex operator - (const Complex &b) const {
            return Complex(x - b.x, y - b.y);
        }
        Complex operator * (const Complex &b) const {
            return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
        }
    };
    
    void change(Complex y[], int len) {
        int i, j, k;
        for(i = 1, j = len / 2; i < len - 1; i++) {
            if(i < j) swap(y[i], y[j]);
            k = len / 2;
            while(j >= k) {
                j -= k;
                k /= 2;
            }
            if(j < k) j += k;
        }
    }
    
    void fft(Complex y[], int len, int on) {
        change(y, len);
        for(int h = 2; h <= len; h <<= 1) {
            Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
            for(int j = 0; j < len; j += h) {
                Complex w(1, 0);
                for(int k = j; k < j + h / 2; k++) {
                    Complex u = y[k];
                    Complex t = w * y[k + h / 2];
                    y[k] = u + t;
                    y[k + h / 2] = u - t;
                    w = w * wn;
                }
            }
        }
    
        if(on == -1)
            for(int i = 0; i < len; i++)
                y[i].x /= len;
    }
    
    Complex x1[400005], x2[400005], x3[400005];
    int main() {
        int n;
        scanf("%d", &n);
        for(int i = 1; i <= n; i++) {
            double x;
            scanf("%lf", &x);
            x1[i] = Complex(x, 0);
            x2[n - i + 1] = Complex(x, 0);
            x3[i] = Complex(1.0 / (1.0 * i * i), 0);
        }
        int len = 1;
        while(len <= n + n) len <<= 1;
        fft(x1, len, 1);
        fft(x2, len, 1);
        fft(x3, len, 1);
        for(int i = 0; i <= len; i++) x1[i] = x1[i] * x3[i];
        for(int i = 0; i <= len; i++) x2[i] = x2[i] * x3[i];
        fft(x1, len, -1);
        fft(x2, len, -1);
        for(int i = 1; i <= n; i++) {
            printf("%.3lf
    ", x1[i].x - x2[n - i + 1].x);
        }
        return 0;
    }
    
  • 相关阅读:
    Android Studio的project中两个build.gradle配置的区别
    build script和all projects作用和区别
    让overflow:auto页面滚动条出现时不跳动
    GreenDao设置数据版本
    Greendao 缓存问题
    js中文编码到C#后台解码
    content-type: application/json没有设置导致的500错误
    Android的Device File Explorer刷新文件
    adb server version (31) doesn't match this client (40); killing...
    Sqlserver远程过程调用失败
  • 原文地址:https://www.cnblogs.com/lwqq3/p/11349255.html
Copyright © 2020-2023  润新知