• SPOJ GSS3 Can you answer these queries III (线段树)


    题意:带修 求区间最大连续子段和

    题解:我们需要维护的信息有 区间和 区间最大子段和 区间左连续最大子段和 区间右连续最大子段和

       然后模拟即可

    #include <bits/stdc++.h>
    using namespace std;
    const int MAXN = 5e4 + 5;
    int n, m;
    
    int a[MAXN];
    struct node {
        int sum, ssum, ls, rs;
    }E[MAXN << 2];
    
    void pushup(int rt) {
        int lr = rt << 1;
        int rr = rt << 1 | 1;
        E[rt].ssum = E[lr].ssum + E[rr].ssum;
        E[rt].sum = max(E[lr].sum, E[rr].sum);
        E[rt].sum = max(E[rt].sum, E[lr].rs + E[rr].ls);
        E[rt].ls = max(E[lr].ls, E[lr].ssum + E[rr].ls);
        E[rt].rs = max(E[rr].rs, E[rr].ssum + E[lr].rs);
    }
    
    void build(int l, int r, int rt) {
        if(l == r) {
            E[rt].sum = a[l];
            E[rt].ls = E[rt].rs = E[rt].ssum = a[l];
            return;
        }
    
        int mid = l + r >> 1;
        build(l, mid, rt << 1);
        build(mid + 1, r, rt << 1 | 1);
        pushup(rt);
    }
    
    void update(int k, int v, int l, int r, int rt) {
        if(l == r) {
            E[rt].ssum = E[rt].sum = E[rt].ls = E[rt].rs = v;
            return;
        }
    
        int mid = l + r >> 1;
        if(k <= mid) update(k, v, l, mid, rt << 1);
        else update(k, v, mid + 1, r, rt << 1 | 1);
        pushup(rt);
    }
    
    node query(int ql, int qr, int l, int r, int rt) {
        if(ql <= l && qr >= r) return E[rt];
    
        int mid = l + r >> 1;
        if(qr <= mid) return query(ql, qr, l, mid, rt << 1);
        if(ql > mid) return query(ql, qr, mid + 1, r, rt << 1 | 1);
        node ll = query(ql, qr, l, mid, rt << 1);
        node rr = query(ql, qr, mid + 1, r, rt << 1 | 1);
        node res;
        res.ssum = ll.ssum + rr.ssum;
        res.sum = max(ll.sum, rr.sum);
        res.sum = max(res.sum, ll.rs + rr.ls);
        res.ls = max(ll.ls, ll.ssum + rr.ls);
        res.rs = max(rr.rs, rr.ssum + ll.rs);
        return res;
    }
    
    int main() {
        scanf("%d", &n);
        for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
        build(1, n, 1);
        scanf("%d", &m);
        for(int i = 1; i <= m; i++) {
            int opt, x, y;
            scanf("%d%d%d", &opt, &x, &y);
            if(opt == 1) printf("%d
    ", query(x, y, 1, n, 1).sum);
            else update(x, y, 1, n, 1);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    推荐算法学习资料
    imsdroid 学习(初认识)
    从网易新闻看离线阅读的实现思路
    关于PullToRefreshView bug 的修复
    Android Log日志的封装类,显示类名以及行号,快速定位
    Android Sqlite数据库版本升级管理初探
    《围观啦》发布了!!!!!!!
    单本书阅读,android客户端
    Android P2P语音通话实现(思路探讨)
    HTTP协议基础
  • 原文地址:https://www.cnblogs.com/lwqq3/p/11318255.html
Copyright © 2020-2023  润新知