• 缓存原理&设计


    生产中遇到的缓存问题

    • 系统在某个时刻访问量剧增(热点新闻),造成数据库压力剧增甚至崩溃,怎么办?

    • 什么是缓存雪崩、缓存穿透和缓存击穿,会造成什么问题,如何解决?

    • 什么是大Key和热Key,会造成什么问题,如何解决?

    • 如何保证 Redis 中的数据都是热点数据?

    • 缓存和数据库数据是不一致时,会造成什么问题,如何解决?

    • 什么是数据并发竞争,会造成什么问题,如何解决?

    • 单线程的Redis为什么这么快?

    • Redis哨兵和集群的原理及选择?

    • 在多机Redis使用时,如何保证主从服务器的数据一致性?

    缓存基本思想

    缓存的使用场景

    DB缓存,减轻服务器压力

    一般情况下数据存在数据库中,应用程序直接操作数据库。
    当访问量上万,数据库压力增大,可以采取的方案有:
    读写分离,分库分表
    当访问量达到10万、百万,需要引入缓存。
    将已经访问过的内容或数据存储起来,当再次访问时先找缓存,缓存命中返回数据。
    不命中再找数据库,并回填缓存。
    img

    提高系统响应

    数据库的数据是存在文件里,也就是硬盘。与内存做交换(swap)
    在大量瞬间访问时(高并发)MySQL单机会因为频繁IO而造成无法响应。MySQL的InnoDB是有行锁
    将数据缓存在Redis中,也就是存在了内存中。
    内存天然支持高并发访问。可以瞬间处理大量请求。
    qps到达10万读请求

    做Session分离

    传统的session是由tomcat自己进行维护和管理。
    集群或分布式环境,不同的tomcat管理各自的session。
    只能在各个tomcat之间,通过网络和Io进行session的复制,极大的影响了系统的性能。
    将登录成功后的Session信息,存放在Redis中,这样多个服务器(Tomcat)可以共享Session信息。

    img

    做分布式锁(Redis)

    一般讲锁是多线程的锁,是在一个进程中的
    多个进程(JVM)在并发时也会产生问题,也要控制时序性
    可以采用分布式锁。使用Redis实现 sexNX

    做乐观锁(Redis)

    同步锁和数据库中的行锁、表锁都是悲观锁
    悲观锁的性能是比较低的,响应性比较差
    高性能、高响应(秒杀)采用乐观锁
    Redis可以实现乐观锁 watch + incr

    什么是缓存?

    缓存原指CPU上的一种高速存储器,它先于内存与CPU交换数据,速度很快
    现在泛指存储在计算机上的原始数据的复制集,便于快速访问。
    在互联网技术中,缓存是系统快速响应的关键技术之一

    大型网站中缓存的使用

    单机架构LAMP(Linux+apache+MySQL+PHP)、JavaEE(SSM)
    访问量越大,响应力越差,用户体验越差
    引入缓存、示意图如下:
    img

    在大型网站中从浏览器到网络,再到应用服务器,再到数据库,通过在各个层面应用缓存技术,大大提
    升了系统性能和用户体验。

    常见缓存的分类

    客户端缓存

    传统互联网:页面缓存和浏览器缓存
    移动互联网:APP缓存

    页面缓存

    页面缓存:页面自身对某些元素或全部元素进行存储,并保存成文件。
    html5:Cookie、WebStorage(SessionStorage和LocalStorage)、WebSql、indexDB、Application
    Cache等
    开启步骤:
    1、设置manifest描述文件

    CACHE MANIFEST
    #comment
    js/index.js
    img/bg.png
    

    2、html关联manifest属性

    <html lang="en" manifest="demo.appcache">
    

    使用LocalStorage进行本地的数据存储,示例代码:

    localStorage.setItem("Name","张飞")
    localStorage.getItem("Name")
    localStorage.removeItem("Name")
    localStorage.clear()
    

    浏览器缓存

    当客户端向服务器请求资源时,会先抵达浏览器缓存,如果浏览器有“要请求资源”的副本,就可以直接
    从浏览器缓存中提取而不是从原始服务器中提取这个资源。
    浏览器缓存可分为强制缓存和协商缓存。
    强制缓存:直接使用浏览器的缓存数据
    条件:Cache-Control的max-age没有过期或者Expires的缓存时间没有过期

    <meta http-equiv="Cache-Control" content="max-age=7200" />
    <meta http-equiv="Expires" content="Mon, 20 Aug 2010 23:00:00 GMT" />
    

    协商缓存:服务器资源未修改,使用浏览器的缓存(304);反之,使用服务器资源(200)。

    <meta http-equiv="cache-control" content="no-cache">
    

    APP缓存

    原生APP中把数据缓存在内存、文件或本地数据库(SQLite)中。比如图片文件。

    网络端缓存

    通过代理的方式响应客户端请求,对重复的请求返回缓存中的数据资源。

    Web代理缓存

    可以缓存原生服务器的静态资源,比如样式、图片等。
    常见的反向代理服务器比如大名鼎鼎的Nginx。
    img

    边缘缓存

    边缘缓存中典型的商业化服务就是CDN了。
    CDN的全称是Content Delivery Network,即内容分发网络。
    CDN通过部署在各地的边缘服务器,使用户就近获取所需内容,降低网络拥塞,提高用户访问响应速度
    和命中率。
    CDN的关键技术主要有内容存储和分发技术。现在一般的公有云服务商都提供CDN服务。
    img

    服务端缓存

    服务器端缓存是整个缓存体系的核心。包括数据库级缓存、平台级缓存和应用级缓存。

    数据库级缓存

    数据库是用来存储和管理数据的。
    MySQL在Server层使用查询缓存机制。将查询后的数据缓存起来。
    K-V结构,Key:select语句的hash值,Value:查询结果
    InnoDB存储引擎中的buffer-pool用于缓存InnoDB索引及数据块。

    平台级缓存

    平台级缓存指的是带有缓存特性的应用框架。
    比如:GuavaCache 、EhCache、OSCache等。
    部署在应用服务器上,也称为服务器本地缓存。

    应用级缓存(重点)

    具有缓存功能的中间件:Redis、Memcached、EVCache、Tair等。
    采用K-V形式存储。
    利用集群支持高可用、高性能、高并发、高扩展。
    分布式缓存

    缓存的优势 、代价

    使用缓存的优势

    提升用户体验

    用户体验(User Experience):用户在使用产品过程中建立起来的一种纯主观感受。
    缓存的使用可以提升系统的响应能力,大大提升了用户体验。

    减轻服务器压力

    客户端缓存、网络端缓存减轻应用服务器压力。
    服务端缓存减轻数据库服务器的压力。

    提升系统性能

    系统性能指标:响应时间、延迟时间、吞吐量、并发用户数和资源利用率等。
    缓存技术可以:
    缩短系统的响应时间
    减少网络传输时间和应用延迟时间
    提高系统的吞吐量
    增加系统的并发用户数
    提高了数据库资源的利用率

    使用缓存的代价

    额外的硬件支出

    缓存是一种软件系统中以空间换时间的技术
    需要额外的磁盘空间和内存空间来存储数据
    搭建缓存服务器集群需要额外的服务器
    采用云服务器的缓存服务就不用额外的服务器了
    阿里云,百度云,提供缓存服务

    高并发缓存失效

    在高并发场景下会出现缓存失效(缓存穿透、缓存雪崩、缓存击穿)
    造成瞬间数据库访问量增大,甚至崩溃

    缓存与数据库数据同步

    缓存与数据库无法做到数据的时时同步
    Redis无法做到主从时时数据同步

    缓存并发竞争

    多个redis的客户端同时对一个key进行set值得时候由于执行顺序引起的并发问题

    缓存的读写模式

    缓存有三种读写模式

    Cache Aside Pattern(常用)

    Cache Aside Pattern(旁路缓存),是最经典的缓存+数据库读写模式。
    读的时候,先读缓存,缓存没有的话,就读数据库,然后取出数据后放入缓存,同时返回响应。
    img

    更新的时候,先更新数据库,然后再删除缓存。
    img

    为什么是删除缓存,而不是更新缓存呢?
    1、缓存的值是一个结构:hash、list,更新数据需要遍历
    img

    2、懒加载,使用的时候才更新缓存
    也可以采用异步的方式填充缓存
    高并发脏读的三种情况
    1、先更新数据库,再更新缓存
    img

    2、先删除缓存,再更新数据库
    img

    3、先更新数据库,再删除缓存(推荐)
    img

    Read/Write Through Pattern

    应用程序只操作缓存,缓存操作数据库。
    Read-Through(穿透读模式/直读模式):应用程序读缓存,缓存没有,由缓存回源到数据库,并写入
    缓存。
    Write-Through(穿透写模式/直写模式):应用程序写缓存,缓存写数据库。
    该种模式需要提供数据库的handler,开发较为复杂。

    Write Behind Caching Pattern

    应用程序只更新缓存。
    缓存通过异步的方式将数据批量或合并后更新到DB中
    不能时时同步,甚至会丢数据

    缓存架构的设计思路

    缓存的整体设计思路包括:
    1、多层次
    img

    分布式缓存宕机,本地缓存还可以使用
    2、数据类型
    简单数据类型
    Value是字符串或整数
    Value的值比较大(大于100K)
    只进行setter和getter
    可采用Memcached
    Memcached纯内存缓存,多线程
    复杂数据类型
    Value是hash、set、list、zset
    需要存储关系,聚合,计算
    可采用Redis
    3、要做集群
    分布式缓存集群方案(Redis)
    哨兵+主从
    RedisCluster
    4、缓存的数据结构设计
    1、与数据库表一致
    数据库表和缓存是一一对应的
    缓存的字段会比数据库表少一些
    缓存的数据是经常访问的
    用户表,商品表
    2、与数据库表不一致
    需要存储关系,聚合,计算等
    比如某个用户的帖子、用户的评论。
    以用户评论为例,DB结构如下:

    ID UID PostTime Content
    1 1000 1547342000 xxxxxxxxxx
    2 1000 1547342000 xxxxxxxxxx
    3 1001 1547341030 xxxxxxxxxx

    如果要取出UID为1000的用户的评论,原始的表的数据结构显然是不行的。
    我们应做如下设计:
    key:UID+时间戳(精确到天) 评论一般以天为计算单位
    value:Redis的Hash类型。field为 id和content
    expire:设置为一天

    案例:设计拉勾首页缓存职位列表、热门职位

    拉勾网(www.lagou.com),是国内的招聘门户网站,亿万级PV,单机响应性能QPS万级。
    首页分析:
    职位时时变化,不能使用静态html (模板技术)
    数据在服务端拿出,不能为空
    数据不一定时时
    架构图如下:
    img

    1、静态文件
    在nginx中,放置静态文件,比如css,js, 图片等

    server {
      listen 80 default_server;
      server_name localhost;
      root /mnt/blog/;
      location / {
      } 
      #	要缓存文件的后缀,可以在以下设置。
      location ~ .*.(gif|jpg|png|css|js)(.*) {
      	proxy_pass http://ip地址:90;
        proxy_redirect off;
        proxy_set_header Host $host;
        proxy_cache cache_one;
        proxy_cache_valid 200 302 24h;
        proxy_cache_valid 301 30d;
        proxy_cache_valid any 5m;
        expires 90d;
        add_header wall "hello lagou.";
      }
    }
    

    2、职位列表
    img

    数据特点:
    固定数据,一次性读取
    方案:
    在服务器开启时一次性初始化到服务器本地缓存
    采用Guava Cache,Guava Cache用于存储频繁使用的少量数据,支持高并发访问
    也可以使用JDK的CurrentHashMap,需要自行实现
    3、热门职位
    img

    数据特点:
    频繁变化,不必时时同步
    但一定要有数据,不能为空
    方案:
    数据从服务层读取(dubbo),然后放到本地缓存中(Guava),如果出现超时或读取为空,则返回原
    来本地缓存的数据。
    注意:不同的客户端看到的数据有可能不一样。
    4、数据回填
    从Dubbo中读取数据时,先读取Redis集群的缓存,如果缓存命中则直接返回。
    如果缓存不命中则返回本地缓存,不能直接读取数据库。
    采用异步的形式从数据库刷入到缓存中。
    5、热点策略
    对于热点数据我们采用本地缓存策略,而不采用服务熔断策略,因为首页数据可以不准确,但不能不响
    应。

    别废话,拿你代码给我看。
  • 相关阅读:
    Python+Selenium练习(二十六)- 多窗口之间切换
    Python+Selenium练习(二十五)-执行JavaScript
    Python+Selenium练习(二十四)- 鼠标右键
    Python+Selenium练习(二十三)- 组合键-退格键删除文字
    Python+Selenium练习(二十二)-组合键-全选文字
    Python+Selenium练习(二十一)-获取页面元素大小
    Python+Selenium练习(二十)-验证控件是否被选中
    Python+Selenium练习(十九)-获取元素上面的文字
    Python+Selenium练习(十八)-断言页面标题
    Python+Selenium练习(十七)-自定义浏览窗口大小
  • 原文地址:https://www.cnblogs.com/lvxueyang/p/14995029.html
Copyright © 2020-2023  润新知