• 计算机视觉(一)


    1. CV背景介绍

    两个项目整理:

      OpenBR http://openbiometrics.org/  人脸识别
      http://git.oschina.net/easypr/EasyPR   车牌定位

    2.opencv库的完全解析

      Clion + opencv3.2

      安装方法

             https://blog.csdn.net/bskfnvjtlyzmv867/article/details/78940472

    3.图像的基本操作:遍历图像、ROI选取

      

      Opencv 中都是用Mat进行矩阵管理

    #include "cv.hpp"
    using namespace cv;
    using namespace std;
    #include <iostream>
    
    int main() {
        Mat M(3,2,CV_8UC3,Scalar(0,0,255));
    //    cout << "Hello, World!" <<endl;
        cout << M <<endl;
        return 0;
    }

    M=
    [ 0, 0, 255, 0, 0, 255;
    0, 0, 255, 0, 0, 255;
    0, 0, 255, 0, 0, 255]

     

     

    遍历图像的六种方法:
    1.
    uchar value = grayim.at<uchar>(i,j);
    for( int i = 0; i < grayim.rows; ++i)
    for( int j = 0; j < grayim.cols; ++j )
    grayim.at<uchar>(i,j) = (i+j)%255;
    for( int i = 0; i < colorim.rows; ++i) for( int j = 0; j < colorim.cols; ++j ) { Vec3b pixel; pixel[0] = i%255; //Blue pixel[1] = j%255; //Green pixel[2] = 0; //Red colorim.at<Vec3b>(i,j) = pixel; } 2.
    彩色图像:
    cv::Mat Iterator_<uchar> grayit, grayend; for( colorit = colorbegin = im.begin<uchar>(), colorend = colorim.end<uchar>(); colorit != colorend; ++colorit) {

      *colorit[0] = rand()%255;
      *colorit[1] = rand()%255;
      *colorit[2] = rand()%255;
    }
    灰度图像:
    cv::Mat Iterator_<uchar> grayit, grayend;
    for( grayit = grayim.begin<uchar>(), grayend =
    grayim.end<uchar>(); grayit != grayend; ++grayit)
    *grayit = rand()%255;
    3.
    for( int i = 0; i < grayim.rows; ++i)
    {
    //获取第 i 行首像素指针
    uchar * p = grayim.ptr<uchar>(i);
    //对第 i 行的每个像素(byte)操作
    for( int j = 0; j < grayim.cols; ++j )
    p[j] = (i+j)%255;
    }
    4.
    Mat M(600, 800, CV_8UC1);
    for( int i = 0; i < M.rows; ++i)
    {
    uchar * p = M.ptr<uchar>(i);
    for( int j = 0; j < M.cols; ++j )
    {
    double d1 = (double) ((i+j)%255);
    M.at<uchar>(i,j) = d1;
    double d2 = M.at<double>(i,j);
    }
    }
    5.
    查找表的方式
    int divideWith=10;  uchar table[256];  for (int i = 0; i < 256; ++i)  table[i] = divideWith* (i/divideWith);  Mat lookUpTable(1, 256, CV_8U);  uchar* p = lookUpTable.data;  for( int i = 0; i < 256; ++i)  p[i] = table[i];  LUT(I, lookUpTable, Out); 6.
    地址寻址去访问 addr(Mi0,i1,…im
    -1) = M.data + M.step[0] * i0 + M.step[1] * i1 + … + M.step[m-1] * im-1 (其中 m = M.dims M的维度) 

    4.Python环境搭建+语法

       python基础教程: 

      http://www.runoob.com/python/python-tutorial.html

    5.机器学习在CV中的应用: KmeansKNN

       监督学习

        回归、分类

       无监督学习  

        聚类

       KNN:  

    目标:分类未知类别案例。

    输入:待分类未知类别案例项目。已知类别案例集合D ,其中包含 j个已知类别的案例

    输出:项目可能的类别

    #include<stdio.h>
    #include<stdlib.h>
    #include<cv.h>
    #include<highgui.h>
    #include<ml.h>
    #include<time.h>
    
    using namespace cv;
    
    int readFlippedInteger(FILE *);
    
    int main()
    {
        FILE *fp = fopen("..\data\train-images.idx3-ubyte", "rb");
    
        FILE *fp2 = fopen("..\data\train-labels.idx1-ubyte", "rb");
    
        if (!fp || !fp2)
        {
            //    cout << "Files not Found" << endl;
            return 0;
        }
    
        int magicNumber = readFlippedInteger(fp);
        int numImages = readFlippedInteger(fp);
        int numRows = readFlippedInteger(fp);
        int numCols = readFlippedInteger(fp);
    
        fseek(fp2, 0x08, SEEK_SET);
    
        int size = numRows*numCols;
    
        Mat trainingVectors(numImages, size, CV_32FC1);
        Mat trainingLabels(numImages, 1, CV_32FC1);
        //CvMat *trainingVectors = cvCreateMat(numImages, size, CV_32FC1);
        //CvMat *trainingLabels = cvCreateMat(numImages, 1, CV_32FC1);
    
        uchar *temp = new uchar[size];
        //unsigned char *temp = new unsigned char[size];
    
        uchar tempClass = 0;
    
        for (int i = 0; i < numImages; i++)
        {
            fread((void*)temp, size, 1, fp);
            fread((void*)(&tempClass), sizeof(uchar), 1, fp2);
            trainingLabels.at<float>(i, 0) = tempClass;
            Mat img(numRows, numCols, CV_32FC1);
            for (int k = 0; k < size; k++)
            {
                trainingVectors.at<float>(i, k) = temp[k];
                img.at<float>(k / numCols, k%numCols) = temp[k];
            }
            imshow("data", img);
            //waitKey(2);
        }
    
        KNearest knn(trainingVectors, trainingLabels);
        printf("Maximum k: %d
    ", knn.get_max_k());
        
    
        fclose(fp);
        fclose(fp2);
        delete[] temp;
    
    
        fp = fopen("..\data\t10k-images.idx3-ubyte", "rb");
        fp2 = fopen("..\data\t10k-labels.idx1-ubyte", "rb");
    
        magicNumber = readFlippedInteger(fp);
        numImages = readFlippedInteger(fp);
        numRows = readFlippedInteger(fp);
    
        numCols = readFlippedInteger(fp);
    
        fseek(fp2, 0x08, SEEK_SET);
        CvMat *testVectors = cvCreateMat(numImages, size, CV_32FC1);
        CvMat *testLabels = cvCreateMat(numImages, 1, CV_32FC1);
        CvMat *actualLabels = cvCreateMat(numImages, 1, CV_32FC1);
        temp = new uchar[size];
        tempClass = 1;
        CvMat *currentTest = cvCreateMat(1, size, CV_32FC1);
        CvMat *currentLabel = cvCreateMat(1, 1, CV_32FC1);
        int totalCorrect = 0;
    
        for (int i = 0; i<numImages; i++)
        {
    
            fread((void*)temp, size, 1, fp);
    
            fread((void*)(&tempClass), sizeof(uchar), 1, fp2);
    
            actualLabels->data.fl[i] = (float)tempClass;
    
            for (int k = 0; k<size; k++)
            {
                testVectors->data.fl[i*size + k] = temp[k];
                currentTest->data.fl[k] = temp[k];
            }
            knn.find_nearest(currentTest, 5, currentLabel);
    
            testLabels->data.fl[i] = currentLabel->data.fl[0];
    
            if (currentLabel->data.fl[0] == actualLabels->data.fl[i])
                totalCorrect++;
        }
        printf("Time: %d Accuracy: %f ", (int)time, (double)totalCorrect * 100 / (double)numImages);
    }
    
    int readFlippedInteger(FILE *fp) {
        int ret = 0;    
        uchar *temp;
        temp = (uchar*)(&ret);    
        fread(&temp[3], sizeof(uchar), 1, fp);    
        fread(&temp[2], sizeof(uchar), 1, fp);    
        fread(&temp[1], sizeof(uchar), 1, fp);    
        fread(&temp[0], sizeof(uchar), 1, fp);     
        return ret;
    }

    K-means:

      欧式距离进行计算。数据集取与分类之间欧式距离的平均值作为新的分类点,一直到循环迭代,中心变化很小便停止了。

    // colorReduce.cpp : Defines the entry point for the console application.
    //
    
    #include "stdafx.h"
    #include <iostream>
    #include <vector>
    
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    
    
    void colorReduce(cv::Mat& image, int div = 64)
    {
        int nl = image.rows;                    // number of lines
        int nc = image.cols * image.channels(); // number of elements per line
    
        for (int j = 0; j < nl; j++)
        {
            // get the address of row j
            uchar* data = image.ptr<uchar>(j);
    
            for (int i = 0; i < nc; i++)
            {
                // process each pixel
                data[i] = data[i] / div * div;
            }
        }
    }
    void keamsCplus(cv::Mat& input, cv::Mat& output, int clusterCount = 4){
        cv::Mat src;
        input.copyTo(src);
        //step 1 : map the src to the samples
        cv::Mat samples = src.reshape(1, src.total());
        samples.convertTo(samples, CV_32F);
        //step 2 : apply kmeans to find labels and centers
        cv::Mat labels;
        int attempts = 5;//try 5 times, choose the best result
        cv::Mat centers;
        cv::kmeans(samples, clusterCount, labels,
            cv::TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS,
            10, 0.01),
            attempts, cv::KMEANS_PP_CENTERS, centers);
    
        //step 3 : map the centers to the output
        // Now convert back into uint8, and make original image
        cv::Mat new_image(src.size(), src.type());
        cv::Mat red_samples(src.total(), 3, CV_8U);
        centers.convertTo(centers, CV_8U);
        for (int i = 0; i < src.total(); i++)
        {
            int clusterIdx = labels.at<int>(i);
            centers.row(clusterIdx).copyTo(red_samples.row(i));
        }
        new_image = red_samples.reshape(3, src.rows);
        new_image.copyTo(output);
    }
    
    int main(int argc, char* argv[])
    {
        // Load input image (colored, 3-channel, BGR)
        cv::Mat input = cv::imread("boldt.jpg");
        if (input.empty())
        {
            std::cout << "!!! Failed imread()" << std::endl;
            return -1;
        }
    
        int divideWith = 64;
        uchar table[256];
        for (int i = 0; i < 256; ++i)
            table[i] = (uchar)(divideWith * (i / divideWith));
        cv::Mat lookUpTable(1, 256, CV_8U);
        uchar*p = lookUpTable.data;
        for (int i = 0; i < 256; i++)
            p[i] = table[i];
        cv::Mat result;
        LUT(input, lookUpTable, result);
        ///////////////////
        //kmeans
        cv::Mat resultKmeans;
        keamsCplus(input, resultKmeans,8);
        //////////////////////
        colorReduce(input);
        ///////////////////////
        cv::imshow("Color Reduction", input);
        cv::imwrite("output.jpg", input);
        cv::waitKey(0);
    
        return 0;
    }
  • 相关阅读:
    s
    qq
    qqq
    q
    qq
    http请求报文
    qq
    q
    qqq
    java对象-String的用法
  • 原文地址:https://www.cnblogs.com/lvxiaoning/p/10065127.html
Copyright © 2020-2023  润新知