在安全性要求比较高的系统中都会涉及到数据的加密、解密。.NET为我们封装了常用的加密算法,例如:MD5,DES,RSA等。有可逆加密,也有非可逆加密;有对称加密,也有非对称加密。加密、解密一般会用在软件的注册码,系统密码,通讯中。今天我就来分享,汇总一下C#.NET加密、解密的实现方法。
一、不可逆加密
不可逆加密一般不会涉及到解密。也就是是加密之后的密文不能还原成原来的明文。这种算法一般用于生成自信摘要,确保数据的完整性及防篡改。
使用FormsAuthentication类加密
using System.Web.Security; namespace EncyptDemo { public class WebEncryptor { /// <summary> /// SHA1加密字符串 /// </summary> /// <param name="source">源字符串</param> /// <returns>加密后的字符串</returns> public string SHA1(string source) { return FormsAuthentication.HashPasswordForStoringInConfigFile(source, "SHA1"); } /// <summary> /// MD5加密字符串 /// </summary> /// <param name="source">源字符串</param> /// <returns>加密后的字符串</returns> public string MD5(string source) { return FormsAuthentication.HashPasswordForStoringInConfigFile(source, "MD5"); ; } } }
使用MD5CryptoServiceProvider类生成MD5字符串
using System; using System.Security.Cryptography; using System.Text; namespace EncyptDemo { public class MD5Helper { public string GetMD5_32(string s, string _input_charset = "utf8") { MD5 md5 = new MD5CryptoServiceProvider(); byte[] t = md5.ComputeHash(Encoding.GetEncoding(_input_charset).GetBytes(s)); StringBuilder sb = new StringBuilder(32); for (int i = 0; i < t.Length; i++) { sb.Append(t[i].ToString("x").PadLeft(2, '0')); } return sb.ToString(); } //16位加密 public static string GetMd5_16(string s) { MD5CryptoServiceProvider md5 = new MD5CryptoServiceProvider(); string t2 = BitConverter.ToString(md5.ComputeHash(UTF8Encoding.Default.GetBytes(s)), 4, 8); t2 = t2.Replace("-", ""); return t2; } } }
二、可逆加密、解密
可逆加密,这种算法加密之后的密码文可以解密成原来的明文。比如通讯的时候,数据的发送方和接收方约定好加密和解密的key,发送放把原始数据加密之后开始发送,接收放收到数据之后开始解密,把密文原来成明文。
可逆加密又分为对称加密和非对称加密。所谓对称加密就是加密和解密的算法一样,也就是用来加密的key和解密的key是完全一样的。而非对称加密加密的key和解密的key是不一样的,加密是用公钥,解密是用私钥。
2.1、对称加密
对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。
在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES、IDEA和AES。
using System; using System.IO; using System.Security.Cryptography; using System.Text; namespace EncyptDemo { public class SymmetryEncrypt { private SymmetricAlgorithm mobjCryptoService; private string Key; /// <summary> /// 对称加密类的构造函数 /// </summary> public SymmetryEncrypt() { mobjCryptoService = new RijndaelManaged(); Key = "Guz(%&hj7x89H$yuBI0456FtmaT5&fvHUFCy76*h%(HilJ$lhj!y6&(*jkP87jH7"; } /// <summary> /// 获得密钥 /// </summary> /// <returns>密钥</returns> private byte[] GetLegalKey() { string sTemp = Key; mobjCryptoService.GenerateKey(); byte[] bytTemp = mobjCryptoService.Key; int KeyLength = bytTemp.Length; if (sTemp.Length > KeyLength) sTemp = sTemp.Substring(0, KeyLength); else if (sTemp.Length < KeyLength) sTemp = sTemp.PadRight(KeyLength, ' '); return ASCIIEncoding.ASCII.GetBytes(sTemp); } /// <summary> /// 获得初始向量IV /// </summary> /// <returns>初试向量IV</returns> private byte[] GetLegalIV() { string sTemp = "E4ghj*Ghg7!rNIfb&95GUY86GfghUb#er57HBh(u%g6HJ($jhWk7&!hg4ui%$hjk"; mobjCryptoService.GenerateIV(); byte[] bytTemp = mobjCryptoService.IV; int IVLength = bytTemp.Length; if (sTemp.Length > IVLength) sTemp = sTemp.Substring(0, IVLength); else if (sTemp.Length < IVLength) sTemp = sTemp.PadRight(IVLength, ' '); return ASCIIEncoding.ASCII.GetBytes(sTemp); } /// <summary> /// 加密方法 /// </summary> /// <param name="Source">待加密的串</param> /// <returns>经过加密的串</returns> public string Encrypto(string Source) { byte[] bytIn = UTF8Encoding.UTF8.GetBytes(Source); MemoryStream ms = new MemoryStream(); mobjCryptoService.Key = GetLegalKey(); mobjCryptoService.IV = GetLegalIV(); ICryptoTransform encrypto = mobjCryptoService.CreateEncryptor(); CryptoStream cs = new CryptoStream(ms, encrypto, CryptoStreamMode.Write); cs.Write(bytIn, 0, bytIn.Length); cs.FlushFinalBlock(); ms.Close(); byte[] bytOut = ms.ToArray(); return Convert.ToBase64String(bytOut); } /// <summary> /// 解密方法 /// </summary> /// <param name="Source">待解密的串</param> /// <returns>经过解密的串</returns> public string Decrypto(string Source) { byte[] bytIn = Convert.FromBase64String(Source); MemoryStream ms = new MemoryStream(bytIn, 0, bytIn.Length); mobjCryptoService.Key = GetLegalKey(); mobjCryptoService.IV = GetLegalIV(); ICryptoTransform encrypto = mobjCryptoService.CreateDecryptor(); CryptoStream cs = new CryptoStream(ms, encrypto, CryptoStreamMode.Read); StreamReader sr = new StreamReader(cs); return sr.ReadToEnd(); } } }
在对称加密算法中比较著名和常用的就是大名鼎鼎的DES加密算法,它安全性比较高的一种算法,目前只有一种方法可以破解该算法,那就是穷举法。下面我们来看看.NET中要使用DES加密怎么实现?
using System; using System.IO; using System.Security.Cryptography; using System.Text; namespace EncyptDemo { public class DESHeper { //默认密钥向量 private static byte[] Keys = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF }; /// <summary> /// DES加密字符串 /// </summary> /// <param name="encryptString">待加密的字符串</param> /// <param name="encryptKey">加密密钥,要求为8位</param> /// <returns>加密成功返回加密后的字符串,失败返回源串</returns> public static string EncryptDES(string encryptString, string encryptKey) { try { byte[] rgbKey = Encoding.UTF8.GetBytes(encryptKey.Substring(0, 8)); byte[] rgbIV = Keys; byte[] inputByteArray = Encoding.UTF8.GetBytes(encryptString); DESCryptoServiceProvider dCSP = new DESCryptoServiceProvider(); MemoryStream mStream = new MemoryStream(); CryptoStream cStream = new CryptoStream(mStream, dCSP.CreateEncryptor(rgbKey, rgbIV), CryptoStreamMode.Write); cStream.Write(inputByteArray, 0, inputByteArray.Length); cStream.FlushFinalBlock(); return Convert.ToBase64String(mStream.ToArray()); } catch { return encryptString; } } /// <summary> /// DES解密字符串 /// </summary> /// <param name="decryptString">待解密的字符串</param> /// <param name="decryptKey">解密密钥,要求为8位,和加密密钥相同</param> /// <returns>解密成功返回解密后的字符串,失败返源串</returns> public static string DecryptDES(string decryptString, string decryptKey) { try { byte[] rgbKey = Encoding.UTF8.GetBytes(decryptKey); byte[] rgbIV = Keys; byte[] inputByteArray = Convert.FromBase64String(decryptString); DESCryptoServiceProvider DCSP = new DESCryptoServiceProvider(); MemoryStream mStream = new MemoryStream(); CryptoStream cStream = new CryptoStream(mStream, DCSP.CreateDecryptor(rgbKey, rgbIV), CryptoStreamMode.Write); cStream.Write(inputByteArray, 0, inputByteArray.Length); cStream.FlushFinalBlock(); return Encoding.UTF8.GetString(mStream.ToArray()); } catch { return decryptString; } } /// <summary> /// DES加密方法 /// </summary> /// <param name="strPlain">明文</param> /// <param name="strDESKey">密钥</param> /// <param name="strDESIV">向量</param> /// <returns>密文</returns> public string DESEncrypt(string strPlain, string strDESKey, string strDESIV) { //把密钥转换成字节数组 byte[] bytesDESKey = ASCIIEncoding.ASCII.GetBytes(strDESKey); //把向量转换成字节数组 byte[] bytesDESIV = ASCIIEncoding.ASCII.GetBytes(strDESIV); //声明1个新的DES对象 DESCryptoServiceProvider desEncrypt = new DESCryptoServiceProvider(); //开辟一块内存流 MemoryStream msEncrypt = new MemoryStream(); //把内存流对象包装成加密流对象 CryptoStream csEncrypt = new CryptoStream(msEncrypt, desEncrypt.CreateEncryptor(bytesDESKey, bytesDESIV), CryptoStreamMode.Write); //把加密流对象包装成写入流对象 StreamWriter swEncrypt = new StreamWriter(csEncrypt); //写入流对象写入明文 swEncrypt.WriteLine(strPlain); //写入流关闭 swEncrypt.Close(); //加密流关闭 csEncrypt.Close(); //把内存流转换成字节数组,内存流现在已经是密文了 byte[] bytesCipher = msEncrypt.ToArray(); //内存流关闭 msEncrypt.Close(); //把密文字节数组转换为字符串,并返回 return UnicodeEncoding.Unicode.GetString(bytesCipher); } /// <summary> /// DES解密方法 /// </summary> /// <param name="strCipher">密文</param> /// <param name="strDESKey">密钥</param> /// <param name="strDESIV">向量</param> /// <returns>明文</returns> public string DESDecrypt(string strCipher, string strDESKey, string strDESIV) { //把密钥转换成字节数组 byte[] bytesDESKey = ASCIIEncoding.ASCII.GetBytes(strDESKey); //把向量转换成字节数组 byte[] bytesDESIV = ASCIIEncoding.ASCII.GetBytes(strDESIV); //把密文转换成字节数组 byte[] bytesCipher = UnicodeEncoding.Unicode.GetBytes(strCipher); //声明1个新的DES对象 DESCryptoServiceProvider desDecrypt = new DESCryptoServiceProvider(); //开辟一块内存流,并存放密文字节数组 MemoryStream msDecrypt = new MemoryStream(bytesCipher); //把内存流对象包装成解密流对象 CryptoStream csDecrypt = new CryptoStream(msDecrypt, desDecrypt.CreateDecryptor(bytesDESKey, bytesDESIV), CryptoStreamMode.Read); //把解密流对象包装成读出流对象 StreamReader srDecrypt = new StreamReader(csDecrypt); //明文=读出流的读出内容 string strPlainText = srDecrypt.ReadLine(); //读出流关闭 srDecrypt.Close(); //解密流关闭 csDecrypt.Close(); //内存流关闭 msDecrypt.Close(); //返回明文 return strPlainText; } } }
除此之外我们还可以用DES加密文件:
using System; using System.IO; using System.Security.Cryptography; namespace EncyptDemo { public class FileEncrypt { private static void EncryptData(String pathInput, String pathOutput, byte[] desKey, byte[] desIV) { //Create the file streams to handle the input and output files. FileStream fin = new FileStream(pathInput, FileMode.Open, FileAccess.Read); FileStream fout = new FileStream(pathOutput, FileMode.OpenOrCreate, FileAccess.Write); fout.SetLength(0); //Create variables to help with read and write. byte[] bin = new byte[100]; //This is intermediate storage for the encryption. long rdlen = 0; //This is the total number of bytes written. long totlen = fin.Length; //This is the total length of the input file. int len; //This is the number of bytes to be written at a time. DES des = new DESCryptoServiceProvider(); CryptoStream encStream = new CryptoStream(fout, des.CreateEncryptor(desKey, desIV), CryptoStreamMode.Write); //Read from the input file, then encrypt and write to the output file. while (rdlen < totlen) { len = fin.Read(bin, 0, 100); encStream.Write(bin, 0, len); rdlen = rdlen + len; } encStream.Close(); fout.Close(); fin.Close(); } //解密文件 private static void DecryptData(String pathInput, String pathOutput, byte[] desKey, byte[] desIV) { //Create the file streams to handle the input and output files. FileStream fin = new FileStream(pathInput, FileMode.Open, FileAccess.Read); FileStream fout = new FileStream(pathOutput, FileMode.OpenOrCreate, FileAccess.Write); fout.SetLength(0); //Create variables to help with read and write. byte[] bin = new byte[100]; //This is intermediate storage for the encryption. long rdlen = 0; //This is the total number of bytes written. long totlen = fin.Length; //This is the total length of the input file. int len; //This is the number of bytes to be written at a time. DES des = new DESCryptoServiceProvider(); CryptoStream encStream = new CryptoStream(fout, des.CreateDecryptor(desKey, desIV), CryptoStreamMode.Write); //Read from the input file, then encrypt and write to the output file. while (rdlen < totlen) { len = fin.Read(bin, 0, 100); encStream.Write(bin, 0, len); rdlen = rdlen + len; } encStream.Close(); fout.Close(); fin.Close(); } } }
2.2、非对称加密
不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。
广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。尤其是在Linux系统下会经常用到这种非对称加密。反正你只需要记住一点有公钥和私钥对的就是非对称加密。
下面我们来看看C#中的怎么实现RSA非对称加密。
首先,我们要生成一个公钥和私钥对。
using System.IO; using System.Security.Cryptography; namespace ConsoleApplication1 { class Program { static void Main(string[] args) { RSACryptoServiceProvider rsa = new RSACryptoServiceProvider(); using (StreamWriter writer = new StreamWriter("PrivateKey.xml",false)) //这个文件要保密... { writer.WriteLine(rsa.ToXmlString(true)); } using (StreamWriter writer = new StreamWriter("PublicKey.xml",false)) { writer.WriteLine(rsa.ToXmlString(false)); } } } }
运行上面的控制台程序会在程序目录下生成配对的公钥和私钥文件。
接下来写一个RSA加密解密类
using System; using System.Collections.Generic; using System.linq; using System.Text; using System.Security.Cryptography; namespace ClassLibrary1 { public class RSAHelper { static string PublicKey = @"<RSAKeyValue><Modulus>nwbjN1znmyL2KyOIrRy/PbWZpTi+oekJIoGNc6jHCl0JNZLFHNs70fyf7y44BH8L8MBkSm5sSwCZfLm5nAsDNOmuEV5Uab5DuWYSE4R2Z3NkKexJJ4bnmXEZYXPMzTbXIpyvU2y9YVrz1BjjRPeHsb6daVdrBgjs4+2b/ok9myM=</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>"; static string PrivateKey = @"<RSAKeyValue><Modulus>nwbjN1znmyL2KyOIrRy/PbWZpTi+oekJIoGNc6jHCl0JNZLFHNs70fyf7y44BH8L8MBkSm5sSwCZfLm5nAsDNOmuEV5Uab5DuWYSE4R2Z3NkKexJJ4bnmXEZYXPMzTbXIpyvU2y9YVrz1BjjRPeHsb6daVdrBgjs4+2b/ok9myM=</Modulus><Exponent>AQAB</Exponent><P>2PfagXD2zKzUGLkAXpC+04u0xvESpO1PbTUOGA2m8auviEMNz8VempJ/reOlJjEO2q2nrUsbtqKd0m96Cxz0Fw==</P><Q>u6Kiit1XhIgRD9jQnQh36y28LOmku2Gqn9KownMSVGhWzkkHQPw77A2h1OirQiKe6aOIO/yxdwTI/9Ds4Kwc1Q==</Q><DP>GfwtPj1yQXcde8yEX88EG7/qqbzrl7cYQSMOihDwgpcmUbJ+L/kaaHbNNd1CxT0w4z3TDC0np4r4TeCuBDC2hw==</DP><DQ>hl8I0jOC2klrFpMpilunLUeaa/uCWiKuQzhkXKR1qvbxu1b3F+XKr9hvXX6mLn2GmkDfbj4fhOFrZC/lg1weZQ==</DQ><InverseQ>P1y+6el2+1LsdwL14hYCILvsTKGokGSKD35N7HakLmHNjXiU05hN1cnXMsGIZGg+pNHmz/yuPmgNLJoNZCQiCg==</InverseQ><D>D27DriO99jg2W4lfQi2AAaUV/Aq9tUjAMjEQYSEH7+GHe0N7DYnZDE/P1Y5OsWEC76I8GV0N9Vlhi9EaSiJndRvUgphTL2YuAjrVr59Il+lwh/LUBN46AX3cmQm3cFf1F1FXKj4S+QCx/qrCH4mmKpynuQsPL/1XiQSWpugI30E=</D></RSAKeyValue>"; static RSACryptoServiceProvider rsaProvider = new RSACryptoServiceProvider(1024); public static byte[] EncryptData(byte[] data) { RSACryptoServiceProvider rsa = new RSACryptoServiceProvider(1024); //将公钥导入到RSA对象中,准备加密; rsa.FromXmlString(PublicKey); //对数据data进行加密,并返回加密结果; //第二个参数用来选择Padding的格式 byte[] buffer = rsa.Encrypt(data, false); return buffer; } public static byte[] DecryptData(byte[] data) { RSACryptoServiceProvider rsa = new RSACryptoServiceProvider(1024); //将私钥导入RSA中,准备解密; rsa.FromXmlString(PrivateKey); //对数据进行解密,并返回解密结果; return rsa.Decrypt(data, false); } } }
上面的PublicKey和PrivateKey非别是文件PublicKey.xml和PrivateKey.xml里面的内容。测试这个RSAHelper的方法:
[TestMethod()] public void DecryptDataTest() { byte[] data = System.Text.ASCIIEncoding.ASCII.GetBytes("Hello"); byte[] data2 = RSAHelper.EncryptData(data); byte[] actual; actual = RSAHelper.DecryptData(data2); var a = System.Text.ASCIIEncoding.ASCII.GetString(actual); Assert.AreEqual("Hello", a); }
可以看到上面通过EncryptData加密的数据能够通过DecryptData解密成原来的明文(Hello),而这个加密和解密用是不同的密钥。