• move_base


        1》准备导航所需要的包。

               a.ros-indigo-gampping :我们不需要修改包内的东西,所以直接安装可执行文件就好了。

     sudo apt-get install ros-indigo-slam-gmapping

               b.安装雷达的驱动(我的是robopack),直接将提供的ros驱动包拷贝到工作空间中,

               c.安装导航定位包,navigation 进入git:https://github.com/ros-planning/navigation/tree/indigo-devel,下载和自己ros版本匹配的包,解压到自己的工作空间中,

    cd ~/catkin_ws
    catkin_make

    indigo的navigation包会出现一个依赖问题,:Orocos-bfl not found while installing navigation stack ROS indigo + Ubuntu 14.04

    解决方法:
    rosdep install --from-paths src --ignore-src --rosdistro indigo -y

           d.由于导航包在/cmd_val下发布的移动数据加速度会过于不友好,所以我们需要对速度做平滑处理,其实就是控制加速,一般通过滤波即可实现,在此我们采用turtlebot的平滑包即可,

     安装平滑包yocs_velocity_smoother,具体的平滑算法和输入切换请自己阅读源码。

    apt-get install ros-indigo-yocs-velocity-smoother

    所有的包准包好后,我们去准备启动所需的launch文件,首先是机器人地盘的启动文件base_controller.launch:

    复制代码
    <launch>
    
        <param name="use_sim_time" value="false" />
    
        <node name="link_laser" pkg="tf" type="static_transform_publisher" args="0.15 0 0.15 0 0 0 base_link laser 50"/> 
        <node name="link_footprint" pkg="tf" type="static_transform_publisher" args="0 0 0 0 0 0 base_link base_footprint 50"/>
    
        <node pkg="odom_tf_package" type="tf_broadcaster_node" name="serial_send_recevice" output="screen"/>
    
    
        <include file="$(find odom_tf_package)/launch/include/rplidar_ros.launch.xml">
    </include> <arg name="node_name" value="velocity_smoother"/> <arg name="nodelet_manager_name" value="nodelet_manager"/> <arg name="config_file" value="$(find odom_tf_package)/config/yocs_velocity_smoother.yaml"/> <arg name="raw_cmd_vel_topic" value="cmd_vel"/> <arg name="smooth_cmd_vel_topic" value="smoother_cmd_vel"/> <arg name="robot_cmd_vel_topic" value="robot_cmd_vel"/> <arg name="odom_topic" value="odom"/> <!-- nodelet manager --> <node pkg="nodelet" type="nodelet" name="$(arg nodelet_manager_name)" args="manager"/> <!-- velocity smoother --> <include file="$(find yocs_velocity_smoother)/launch/velocity_smoother.launch"> <arg name="node_name" value="$(arg node_name)"/> <arg name="nodelet_manager_name" value="$(arg nodelet_manager_name)"/> <arg name="config_file" value="$(arg config_file)"/> <arg name="raw_cmd_vel_topic" value="$(arg raw_cmd_vel_topic)"/> <arg name="smooth_cmd_vel_topic" value="$(arg smooth_cmd_vel_topic)"/> <arg name="robot_cmd_vel_topic" value="$(arg robot_cmd_vel_topic)"/> <arg name="odom_topic" value="$(arg odom_topic)"/> </include> </launch>
    复制代码

    2.然后去准备建图包的启动文件gmapping.launch

    复制代码
    <launch>
    
      <arg name="scan_topic" default="scan" />
    
      <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen" clear_params="true">
    
        <!--because my used rtabmap_ros -->
        <param name="odom_frame" value="/odom""/>
        <!--param name="odom_frame" value="/base_controller/odom""/-->
        <param name="map_update_interval" value="30.0"/>
    
        <!-- Set maxUrange < actual maximum range of the Laser -->
        <param name="maxRange" value="5.0"/>
        <param name="maxUrange" value="4.5"/>
        <param name="sigma" value="0.05"/>
        <param name="kernelSize" value="1"/>
        <param name="lstep" value="0.05"/>
        <param name="astep" value="0.05"/>
        <param name="iterations" value="5"/>
        <param name="lsigma" value="0.075"/>
        <param name="ogain" value="3.0"/>
        <param name="lskip" value="0"/>
        <param name="srr" value="0.01"/>
        <param name="srt" value="0.02"/>
        <param name="str" value="0.01"/>
        <param name="stt" value="0.02"/>
        <param name="linearUpdate" value="0.5"/>
        <param name="angularUpdate" value="0.436"/>
        <param name="temporalUpdate" value="-1.0"/>
        <param name="resampleThreshold" value="0.5"/>
        <param name="particles" value="80"/>
      <!--
        <param name="xmin" value="-50.0"/>
        <param name="ymin" value="-50.0"/>
        <param name="xmax" value="50.0"/>
        <param name="ymax" value="50.0"/>
      make the starting size small for the benefit of the Android client's memory...
      -->
        <param name="xmin" value="-1.0"/>
        <param name="ymin" value="-1.0"/>
        <param name="xmax" value="1.0"/>
        <param name="ymax" value="1.0"/>
    
        <param name="delta" value="0.05"/>
        <param name="llsamplerange" value="0.01"/>
        <param name="llsamplestep" value="0.01"/>
        <param name="lasamplerange" value="0.005"/>
        <param name="lasamplestep" value="0.005"/>
        <remap from="scan" to="$(arg scan_topic)"/>
      </node>
    </launch>
    复制代码

    3,导航包(move_base)和定位(amcl)的启动文件:savvy_amcl.launch

    复制代码
    <launch>
    
      <param name="use_sim_time" value="false" />
    
      <!-- Set the name of the map yaml file: can be overridden on the command line. -->
      <arg name="map" default="map.yaml" />
    
      <!--node name="map_odom" pkg="tf" type="static_transform_publisher" args="0 0 0 0 0 0 map odom 50"/-->  
    
      <!-- Run the map server with the desired map -->
      <node name="map_server" pkg="map_server" type="map_server" args="$(find savvy)/maps/$(arg map)"/>
    
      <!-- The move_base node -->
      <include file="$(find savvy)/launch/move_base_amcl.launch" />
      
      <!--zxw add Fire up AMCL-->
      <include file="$(find savvy)/launch/tb_amcl.launch" />
      
    
    </launch>
    复制代码
    move_base_amcl.launch:
    复制代码
    <launch>
    
      <node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen" clear_params="true">
        <rosparam file="$(find savvy)/config/savvyconfig/costmap_common_params.yaml" command="load" ns="global_costmap" />
        <rosparam file="$(find savvy)/config/savvyconfig/costmap_common_params.yaml" command="load" ns="local_costmap" />
        <rosparam file="$(find savvy)/config/savvyconfig/local_costmap_params.yaml" command="load" />
        <rosparam file="$(find savvy)/config/savvyconfig/global_costmap_params.yaml" command="load" />
        <rosparam file="$(find savvy)/config/savvyconfig/base_local_planner_params.yaml" command="load" />
    
        <rosparam file="$(find savvy)/config/nav_obstacles_params.yaml" command="load" />
      </node>
      
    </launch>
    复制代码
    tb_amcl.launch:
    复制代码
    <launch>
    
      <arg name="use_map_topic" default="false"/>
    
    
      <arg name="scan_topic" default="scan"/>
    
      <node pkg="amcl" type="amcl" name="amcl" clear_params="true">
    
    
        <param name="use_map_topic" value="$(arg use_map_topic)"/>
        <!-- Publish scans from best pose at a max of 10 Hz -->
        <param name="odom_model_type" value="diff"/>
        <param name="odom_alpha5" value="0.1"/>
        <param name="gui_publish_rate" value="10.0"/>
        <param name="laser_max_beams" value="60"/>
        <param name="laser_max_range" value="12.0"/>
        <param name="min_particles" value="500"/>
        <param name="max_particles" value="2000"/>
        <param name="kld_err" value="0.05"/>
        <param name="kld_z" value="0.99"/>
        <param name="odom_alpha1" value="0.2"/>
        <param name="odom_alpha2" value="0.2"/>
        <!-- translation std dev, m -->
        <param name="odom_alpha3" value="0.2"/>
        <param name="odom_alpha4" value="0.2"/>
        <param name="laser_z_hit" value="0.5"/>
        <param name="laser_z_short" value="0.05"/>
        <param name="laser_z_max" value="0.05"/>
        <param name="laser_z_rand" value="0.5"/>
        <param name="laser_sigma_hit" value="0.2"/>
        <param name="laser_lambda_short" value="0.1"/>
        <param name="laser_model_type" value="likelihood_field"/>
        <!-- <param name="laser_model_type" value="beam"/> -->
        <param name="laser_likelihood_max_dist" value="2.0"/>
        <param name="update_min_d" value="0.25"/>
        <param name="update_min_a" value="0.2"/>
    
        <param name="odom_frame_id" value="odom"/>
    
        <param name="resample_interval" value="1"/>
        <!-- Increase tolerance because the computer can get quite busy -->
        <param name="transform_tolerance" value="1.0"/>
        <param name="recovery_alpha_slow" value="0.0"/>
        <param name="recovery_alpha_fast" value="0.0"/>
        <remap from="scan" to="$(arg scan_topic)"/>
      </node>
    </launch>
    复制代码

    4.导航的配置参数如下:

    base_local_planner_params.yaml

    复制代码
    controller_frequency: 2.0
    recovery_behavior_enabled: false
    clearing_rotation_allowed: false
    
    TrajectoryPlannerROS:
       max_vel_x: 0.3
       min_vel_x: 0.05
       max_vel_y: 0.0  # zero for a differential drive robot
       min_vel_y: 0.0
       min_in_place_vel_theta: 0.5
       escape_vel: -0.1
       acc_lim_x: 2.5
       acc_lim_y: 0.0 # zero for a differential drive robot
       acc_lim_theta: 3.2
    
       holonomic_robot: false
       yaw_goal_tolerance: 0.1 # about 6 degrees
       xy_goal_tolerance: 0.15  # 10 cm
       latch_xy_goal_tolerance: false
       pdist_scale: 0.8
       gdist_scale: 0.6
       meter_scoring: true
    
       heading_lookahead: 0.325
       heading_scoring: false
       heading_scoring_timestep: 0.8
       occdist_scale: 0.1
       oscillation_reset_dist: 0.05
       publish_cost_grid_pc: false
       prune_plan: true
    
       sim_time: 2.5
       sim_granularity: 0.025
       angular_sim_granularity: 0.025
       vx_samples: 8
       vy_samples: 0 # zero for a differential drive robot
       vtheta_samples: 20
       dwa: true
       simple_attractor: false
    复制代码

    costmap_common_params.yaml

    复制代码
    obstacle_range: 2.5
    raytrace_range: 3.0
    robot_radius: 0.30
    inflation_radius: 0.15
    max_obstacle_height: 0.6
    min_obstacle_height: 0.0
    observation_sources: scan
    scan: {data_type: LaserScan, topic: /scan, marking: true, clearing: true, expected_update_rate: 0}
    复制代码

    global_costmap_params.yaml

    复制代码
    global_costmap:
       global_frame: /map
       robot_base_frame: /base_link
       update_frequency: 1.0
       publish_frequency: 0
       static_map: true
       rolling_window: false
       resolution: 0.01
       transform_tolerance: 0.5
       map_type: costmap
    复制代码

    local_costmap_params.yaml

    复制代码
    local_costmap:
       global_frame: /odom
       robot_base_frame: /base_link
       update_frequency: 1.0
       publish_frequency: 1.0
       static_map: false
       rolling_window: true
        6.0
       height: 6.0
       resolution: 0.01
       transform_tolerance: 0.5
       map_type: costmap
    复制代码

    四,准备好以上所有的启动文件和配置参数后,我们开始创建地图和导航,

    1.创建地图:

    复制代码
    roslaunch savvy base_controller.launch   //启动地盘控制器
    roslaunch savvy gmapping.launch        
    roscd savvy/maps/
    rosrun map_server map_saver -f mymap


    然后会产生以下地图文件
    mymap.pgm  mymap.yaml
    复制代码

    2.开始导航

    roslaunch savvy base_controller.launch //启动地盘控制器
    roslaunch savvy savvy_amcl.launch map:=mymap.yaml
    rosrun rviz rviz -d `rospack find savvy`/nav_test.rviz

    然后指定导航目标,开始自己慢慢玩吧,不过因为我的TF变换主要是里程计更新的,车体打滑或者地盘电机震荡都会积累误差,所以我们必须添加视觉里成计或者闭环检测。

  • 相关阅读:
    特性和属性
    装箱和拆箱的问题(NET1.1+)
    poj 1013 Counterfeit Dollar(模拟)
    poj 3686 The Windy's( KM算法 )
    二分匹配(匈牙利算法)
    poj 3273 Monthly Expense(二分)
    poj 2115 C Looooops(扩展欧几里德)
    poj 2400 Supervisor, Supervisee
    poj 2195 Going Home (KM算法)
    poj 2513 Colored Sticks(trie树 + 并查集 + 欧拉图)
  • 原文地址:https://www.cnblogs.com/lvchaoshun/p/6925828.html
Copyright © 2020-2023  润新知