• python内置模块collections介绍


    python内置模块collections介绍

    collections是Python内建的一个集合模块,提供了许多有用的集合类。

    1、namedtuple

    python提供了很多非常好用的基本类型,比如不可变类型tuple,我们可以轻松地用它来表示一个二元向量。

    >>> v = (2,3) 
    

    我们发现,虽然(2,3)表示出了一个向量的两个坐标,但是,如果没有额外说明,又很难直接看出这个元组是用来表示一个坐标的。

    为此定义一个class又小题大做了,这时,namedtuple就派上用场了。

    >>> from collections import namedtuple
    >>> Vector = namedtuple('Vector', ['x', 'y'])
    >>> v = Vector(2,3)
    >>> v.x
    2
    >>> v.y
    3
    
    

    namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。

    这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。

    我们可以验证创建的Vector对象的类型。

    >>> type(v)
    <class '__main__.Vector'>
    
    >>> isinstance(v, Vector)
    True
    
    >>> isinstance(v, tuple)
    True 
    
    

    类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

    >>> Circle = namedtuple('Circle', ['x', 'y', 'r'])
    # namedtuple('名称', [‘属性列表’])
    
    

    2、deque

    在数据结构中,我们知道队列和堆栈是两个非常重要的数据类型,一个先进先出,一个后进先出。在python中,使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

    deque是为了高效实现插入和删除操作的双向链表结构,非常适合实现队列和堆栈这样的数据结构。

    >>> from collections import deque
    >>> deq = deque([1, 2, 3])
    >>> deq.append(4)
    >>> deq
    deque([1, 2, 3, 4])
    >>> deq.appendleft(5)
    >>> deq
    deque([5, 1, 2, 3, 4])
    >>> deq.pop()
    4
    >>> deq.popleft()
    5
    >>> deq
    deque([1, 2, 3])
    
    

    deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。

    3、defaultdict

    使用dict字典类型时,如果引用的key不存在,就会抛出KeyError。如果希望Key不存在时,返回一个默认值,就可以用defaultdict。

    >>> from collections import defaultdict
    >>> dd = defaultdict(lambda: 'defaultvalue')
    >>> dd['key1'] = 'a'
    >>> dd['key1']
    'a'
    >>> dd['key2'] # key2未定义,返回默认值
    'defaultvalue'
    
    

    注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。

    除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。

    4、OrderedDict

    使用dict时,key是无序的。在对dict做迭代时,我们无法确定key的顺序。

    但是如果想要保持key的顺序,可以用OrderedDict。

    >>> from collections import OrderedDict
    >>> d = dict([('a', 1), ('b', 2), ('c', 3)])
    >>> d # dict的Key是无序的
    {'a': 1, 'c': 3, 'b': 2}
    >>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
    >>> od # OrderedDict的Key是有序的
    OrderedDict([('a', 1), ('b', 2), ('c', 3)])
    
    

    注意,OrderedDict的key会按照插入的顺序排列,不是key本身排序

    >>> od = OrderedDict()
    >>> od['z'] = 1
    >>> od['y'] = 2
    >>> od['x'] = 3
    >>> list(od.keys()) # 按照插入的Key的顺序返回
    ['z', 'y', 'x']
    
    

    OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的key。

    from collections import OrderedDict
    
    class LastUpdatedOrderedDict(OrderedDict):
    
        def __init__(self, capacity):
            super(LastUpdatedOrderedDict, self).__init__()
            self._capacity = capacity
    
        def __setitem__(self, key, value):
            containsKey = 1 if key in self else 0
            if len(self) - containsKey >= self._capacity:
                last = self.popitem(last=False)
                print('remove:', last)
            if containsKey:
                del self[key]
                print('set:', (key, value))
            else:
                print('add:', (key, value))
            OrderedDict.__setitem__(self, key, value)
    
    

    5、ChainMap

    ChainMap可以把一组dict串起来并组成一个逻辑上的dict。ChainMap本身也是一个dict,但是查找的时候,会按照顺序在内部的dict依次查找。

    什么时候使用ChainMap最合适?举个例子:应用程序往往都需要传入参数,参数可以通过命令行传入,可以通过环境变量传入,还可以有默认参数。我们可以用ChainMap实现参数的优先级查找,即先查命令行参数,如果没有传入,再查环境变量,如果没有,就使用默认参数。

    下面的代码演示了如何查找user和color这两个参数。

    from collections import ChainMap
    import os, argparse
    
    # 构造缺省参数:
    defaults = {
        'color': 'red',
        'user': 'guest'
    }
    
    # 构造命令行参数:
    parser = argparse.ArgumentParser()
    parser.add_argument('-u', '--user')
    parser.add_argument('-c', '--color')
    namespace = parser.parse_args()
    command_line_args = { k: v for k, v in vars(namespace).items() if v }
    
    # 组合成ChainMap:
    combined = ChainMap(command_line_args, os.environ, defaults)
    
    # 打印参数:
    print('color=%s' % combined['color'])
    print('user=%s' % combined['user'])
    
    

    没有任何参数时,打印出默认参数:

    $ python3 use_chainmap.py 
    color=red
    user=guest
    
    

    当传入命令行参数时,优先使用命令行参数:

    $ python3 use_chainmap.py -u bob
    color=red
    user=bob
    
    

    同时传入命令行参数和环境变量,命令行参数的优先级较高:

    $ user=admin color=green python3 use_chainmap.py -u bob
    color=green
    user=bob
    

    6、Counter

    Counter是一个简单的计数器,例如,统计字符出现的个数:

    from collections import Counter
    >>> s = 'abbcccdddd'
    >>> Counter(s)
    Counter({'d': 4, 'c': 3, 'b': 2, 'a': 1})
    
    

    Counter实际上也是dict的一个子类。

    7、小结

    collections模块提供了一些有用的集合类,可以根据需要选用。

  • 相关阅读:
    Linux下SSH的Log文件路径
    Linux下压缩与解压命令tar
    Linux命令之at
    Linux下nice/renice命令小结
    Linux命令详解nice
    LVM---动态调整磁盘容量
    VT100字体
    Linux命令之WC
    for name in loop Shell
    Bind9用view配主从
  • 原文地址:https://www.cnblogs.com/luyuze95/p/11864549.html
Copyright © 2020-2023  润新知