• java 8 stream


    1. 从员工集合中筛选出salary大于8000的员工,并放置到新的集合里。
    2. 统计员工的最高薪资、平均薪资、薪资之和。
    3. 将员工按薪资从高到低排序,同样薪资者年龄小者在前。
    4. 将员工按性别分类,将员工按性别和地区分类,将员工按薪资是否高于8000分为两部分。

    Stream的创建

    • 1、通过 java.util.Collection.stream() 方法用集合创建流
    List<String> list = Arrays.asList("a", "b", "c");
    // 创建一个顺序流
    Stream<String> stream = list.stream();
    // 创建一个并行流
    Stream<String> parallelStream = list.parallelStream();
    View Code
    • 使用java.util.Arrays.stream(T[] array)方法用数组创建流
    int[] array={1,3,5,6,8};
    IntStream stream = Arrays.stream(array);
    View Code
    • 使用Stream的静态方法:of()、iterate()、generate()
    Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);
    
    Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4);
    stream2.forEach(System.out::println);
    
    Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
    stream3.forEach(System.out::println);
    View Code

    Stream的使用

    • 实体案例
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, "male", "New York"));
    personList.add(new Person("Jack", 7000, "male", "Washington"));
    personList.add(new Person("Lily", 7800, "female", "Washington"));
    personList.add(new Person("Anni", 8200, "female", "New York"));
    personList.add(new Person("Owen", 9500, "male", "New York"));
    personList.add(new Person("Alisa", 7900, "female", "New York"));
    
    class Person {
     private String name;  // 姓名
     private int salary; // 薪资
     private int age; // 年龄
     private String sex; //性别
     private String area;  // 地区
    
     // 构造方法
     public Person(String name, int salary, int age,String sex,String area) {
      this.name = name;
      this.salary = salary;
      this.age = age;
      this.sex = sex;
      this.area = area;
     }
     // 省略了get和set,请自行添加
    
    }
    View Code
    • 遍历/匹配(foreach/find/match)

    // import已省略,请自行添加,后面代码亦是
    
    public class StreamTest {
     public static void main(String[] args) {
            List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);
    
            // 遍历输出符合条件的元素
            list.stream().filter(x -> x > 6).forEach(System.out::println);
            // 匹配第一个
            Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();
            // 匹配任意(适用于并行流)
            Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();
            // 是否包含符合特定条件的元素
            boolean anyMatch = list.stream().anyMatch(x -> x < 6);
            System.out.println("匹配第一个值:" + findFirst.get());
            System.out.println("匹配任意一个值:" + findAny.get());
            System.out.println("是否存在大于6的值:" + anyMatch);
        }
    }
    View Code
    • 筛选(filter)

    筛选出Integer集合中大于7的元素,并打印出来
    public class StreamTest {
     public static void main(String[] args) {
      List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
      Stream<Integer> stream = list.stream();
      stream.filter(x -> x > 7).forEach(System.out::println);
     }
    }
    筛选员工中工资高于8000的人,并形成新的集合
    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
      personList.add(new Person("Anni", 8200, 24, "female", "New York"));
      personList.add(new Person("Owen", 9500, 25, "male", "New York"));
      personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
    
      List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName)
        .collect(Collectors.toList());
      System.out.print("高于8000的员工姓名:" + fiterList);
     }
    }
    View Code
    • 聚合(max/min/count)
    获取String集合中最长的元素
    public class StreamTest {
     public static void main(String[] args) {
      List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");
    
      Optional<String> max = list.stream().max(Comparator.comparing(String::length));
      System.out.println("最长的字符串:" + max.get());
     }
    }
    
    获取Integer集合中的最大值。
    public class StreamTest {
     public static void main(String[] args) {
      List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);
    
      // 自然排序
      Optional<Integer> max = list.stream().max(Integer::compareTo);
      // 自定义排序
      Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() {
       @Override
       public int compare(Integer o1, Integer o2) {
        return o1.compareTo(o2);
       }
      });
      System.out.println("自然排序的最大值:" + max.get());
      System.out.println("自定义排序的最大值:" + max2.get());
     }
    }
    
    获取员工工资最高的人
    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
      personList.add(new Person("Anni", 8200, 24, "female", "New York"));
      personList.add(new Person("Owen", 9500, 25, "male", "New York"));
      personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
    
      Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary));
      System.out.println("员工工资最大值:" + max.get().getSalary());
     }
    }
    
    计算Integer集合中大于6的元素的个数
    import java.util.Arrays;
    import java.util.List;
    
    public class StreamTest {
     public static void main(String[] args) {
      List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);
    
      long count = list.stream().filter(x -> x > 6).count();
      System.out.println("list中大于6的元素个数:" + count);
     }
    }
    View Code
    • 映射(map/flatMap)

    英文字符串数组的元素全部改为大写。整数数组每个元素+3
    public class StreamTest {
     public static void main(String[] args) {
      String[] strArr = { "abcd", "bcdd", "defde", "fTr" };
      List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());
    
      List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
      List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());
    
      System.out.println("每个元素大写:" + strList);
      System.out.println("每个元素+3:" + intListNew);
     }
    }
    
    将员工的薪资全部增加1000
    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
      personList.add(new Person("Anni", 8200, 24, "female", "New York"));
      personList.add(new Person("Owen", 9500, 25, "male", "New York"));
      personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
    
      // 不改变原来员工集合的方式
      List<Person> personListNew = personList.stream().map(person -> {
       Person personNew = new Person(person.getName(), 0, 0, null, null);
       personNew.setSalary(person.getSalary() + 10000);
       return personNew;
      }).collect(Collectors.toList());
      System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
      System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());
    
      // 改变原来员工集合的方式
      List<Person> personListNew2 = personList.stream().map(person -> {
       person.setSalary(person.getSalary() + 10000);
       return person;
      }).collect(Collectors.toList());
      System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());
      System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());
     }
    }
    
    将两个字符数组合并成一个新的字符数组
    public class StreamTest {
     public static void main(String[] args) {
      List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");
      List<String> listNew = list.stream().flatMap(s -> {
       // 将每个元素转换成一个stream
       String[] split = s.split(",");
       Stream<String> s2 = Arrays.stream(split);
       return s2;
      }).collect(Collectors.toList());
    
      System.out.println("处理前的集合:" + list);
      System.out.println("处理后的集合:" + listNew);
     }
    }
    
     归约(reduce)
    public class StreamTest {
     public static void main(String[] args) {
      List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
      // 求和方式1
      Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);
      // 求和方式2
      Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
      // 求和方式3
      Integer sum3 = list.stream().reduce(0, Integer::sum);
    
      // 求乘积
      Optional<Integer> product = list.stream().reduce((x, y) -> x * y);
    
      // 求最大值方式1
      Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
      // 求最大值写法2
      Integer max2 = list.stream().reduce(1, Integer::max);
    
      System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
      System.out.println("list求积:" + product.get());
      System.out.println("list求和:" + max.get() + "," + max2);
     }
    }
    求所有员工的工资之和和最高工资
    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
      personList.add(new Person("Anni", 8200, 24, "female", "New York"));
      personList.add(new Person("Owen", 9500, 25, "male", "New York"));
      personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
    
      // 求工资之和方式1:
      Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
      // 求工资之和方式2:
      Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),
        (sum1, sum2) -> sum1 + sum2);
      // 求工资之和方式3:
      Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);
    
      // 求最高工资方式1:
      Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
        Integer::max);
      // 求最高工资方式2:
      Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
        (max1, max2) -> max1 > max2 ? max1 : max2);
    
      System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
      System.out.println("最高工资:" + maxSalary + "," + maxSalary2);
     }
    }
    View Code
    • 归约(reduce)

    归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。

    求Integer集合的元素之和、乘积和最大值。
    public class StreamTest {
     public static void main(String[] args) {
      List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
      // 求和方式1
      Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);
      // 求和方式2
      Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
      // 求和方式3
      Integer sum3 = list.stream().reduce(0, Integer::sum);
    
      // 求乘积
      Optional<Integer> product = list.stream().reduce((x, y) -> x * y);
    
      // 求最大值方式1
      Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
      // 求最大值写法2
      Integer max2 = list.stream().reduce(1, Integer::max);
    
      System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
      System.out.println("list求积:" + product.get());
      System.out.println("list求和:" + max.get() + "," + max2);
     }
    }
    求所有员工的工资之和和最高工资。
    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
      personList.add(new Person("Anni", 8200, 24, "female", "New York"));
      personList.add(new Person("Owen", 9500, 25, "male", "New York"));
      personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
    
      // 求工资之和方式1:
      Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
      // 求工资之和方式2:
      Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),
        (sum1, sum2) -> sum1 + sum2);
      // 求工资之和方式3:
      Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);
    
      // 求最高工资方式1:
      Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
        Integer::max);
      // 求最高工资方式2:
      Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
        (max1, max2) -> max1 > max2 ? max1 : max2);
    
      System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
      System.out.println("最高工资:" + maxSalary + "," + maxSalary2);
     }
    }
    View Code
    • 归集(toList/toSet/toMap)

    因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList、toSet和toMap比较常用,另外还有toCollection、toConcurrentMap等复杂一些的用法
    public class StreamTest {
     public static void main(String[] args) {
      List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
      List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
      Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());
    
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
      personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    
      Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000)
        .collect(Collectors.toMap(Person::getName, p -> p));
      System.out.println("toList:" + listNew);
      System.out.println("toSet:" + set);
      System.out.println("toMap:" + map);
     }
    }
    View Code
    • 统计(count/averaging)

    Collectors提供了一系列用于数据统计的静态方法:

    • 计数:count
    • 平均值:averagingIntaveragingLongaveragingDouble
    • 最值:maxByminBy
    • 求和:summingIntsummingLongsummingDouble
    • 统计以上所有:summarizingIntsummarizingLongsummarizingDouble
    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    
      // 求总数
      Long count = personList.stream().collect(Collectors.counting());
      // 求平均工资
      Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
      // 求最高工资
      Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
      // 求工资之和
      Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
      // 一次性统计所有信息
      DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));
    
      System.out.println("员工总数:" + count);
      System.out.println("员工平均工资:" + average);
      System.out.println("员工工资总和:" + sum);
      System.out.println("员工工资所有统计:" + collect);
     }
    }
    View Code
    • 分组(partitioningBy/groupingBy)

    • 分区:将stream按条件分为两个Map,比如员工按薪资是否高于8000分为两部分。
    • 分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。
    将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组
    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, "male", "New York"));
      personList.add(new Person("Jack", 7000, "male", "Washington"));
      personList.add(new Person("Lily", 7800, "female", "Washington"));
      personList.add(new Person("Anni", 8200, "female", "New York"));
      personList.add(new Person("Owen", 9500, "male", "New York"));
      personList.add(new Person("Alisa", 7900, "female", "New York"));
    
      // 将员工按薪资是否高于8000分组
            Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
            // 将员工按性别分组
            Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
            // 将员工先按性别分组,再按地区分组
            Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
            System.out.println("员工按薪资是否大于8000分组情况:" + part);
            System.out.println("员工按性别分组情况:" + group);
            System.out.println("员工按性别、地区:" + group2);
     }
    }
    View Code
    • 接合(joining) 

    joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。

    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    
      String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
      System.out.println("所有员工的姓名:" + names);
      List<String> list = Arrays.asList("A", "B", "C");
      String string = list.stream().collect(Collectors.joining("-"));
      System.out.println("拼接后的字符串:" + string);
     }
    }
    View Code
    • 归约(reducing)

    Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持。

    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    
      // 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子)
      Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
      System.out.println("员工扣税薪资总和:" + sum);
    
      // stream的reduce
      Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
      System.out.println("员工薪资总和:" + sum2.get());
     }
    }
    View Code
    • 排序(sorted)

    sorted,中间操作。有两种排序:

    • sorted():自然排序,流中元素需实现Comparable接口
    • sorted(Comparator com):Comparator排序器自定义排序
    将员工按工资由高到低(工资一样则按年龄由大到小)排序
    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
    
      personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
      personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
      personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 8800, 26, "male", "New York"));
      personList.add(new Person("Alisa", 9000, 26, "female", "New York"));
    
      // 按工资升序排序(自然排序)
      List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
        .collect(Collectors.toList());
      // 按工资倒序排序
      List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
        .map(Person::getName).collect(Collectors.toList());
      // 先按工资再按年龄升序排序
      List<String> newList3 = personList.stream()
        .sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
        .collect(Collectors.toList());
      // 先按工资再按年龄自定义排序(降序)
      List<String> newList4 = personList.stream().sorted((p1, p2) -> {
       if (p1.getSalary() == p2.getSalary()) {
        return p2.getAge() - p1.getAge();
       } else {
        return p2.getSalary() - p1.getSalary();
       }
      }).map(Person::getName).collect(Collectors.toList());
    
      System.out.println("按工资升序排序:" + newList);
      System.out.println("按工资降序排序:" + newList2);
      System.out.println("先按工资再按年龄升序排序:" + newList3);
      System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
     }
    }
    View Code
    • 提取/组合

    public class StreamTest {
     public static void main(String[] args) {
      String[] arr1 = { "a", "b", "c", "d" };
      String[] arr2 = { "d", "e", "f", "g" };
    
      Stream<String> stream1 = Stream.of(arr1);
      Stream<String> stream2 = Stream.of(arr2);
      // concat:合并两个流 distinct:去重
      List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
      // limit:限制从流中获得前n个数据
      List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
      // skip:跳过前n个数据
      List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());
    
      System.out.println("流合并:" + newList);
      System.out.println("limit:" + collect);
      System.out.println("skip:" + collect2);
     }
    }
    View Code
    故乡明
  • 相关阅读:
    【20220125】连岳摘抄
    【20220127】连岳摘抄
    【20220124】心胸狭窄容易生事
    【20220201】连岳摘抄
    【20220123】连岳摘抄
    【20220130】连岳摘抄
    【一句日历】2022年2月
    【20220126】傅雷家书
    【20220128】勤奋和从容并不冲突
    深入理解JUC:第六章:Semaphore信号灯
  • 原文地址:https://www.cnblogs.com/luweiweicode/p/14084391.html
Copyright © 2020-2023  润新知