• java8中用流收集数据


    用流收集数据

    汇总
    long howManyDishes = menu.stream().collect(Collectors.counting());
    
    int totalCalories = menu.stream().collect(summingInt(Dish::getCalories));
    //求平均值
    double avgCalories = menu.stream().collect(averagingInt(Dish::getCalories));
    //summarizing操作可以得到总和.平均值.最大值.最小值
    IntSummaryStatistics menuStatistics = menu.stream().collect(summarizingInt(Dish::getCalories));
    //打印可得
    IntSummaryStatistics{count= 9,sum=4300,min=120,average=477.777,max = 800};
    
    查找最大值和最小值
    Comparator<Dish> dishCaloriesComparator = Comparator.comparingInt(Dish::getCalories);
    Optional<Dish> mostCalorieDish = menu.stream().collect(maxBy(dishCaloriesComparator));
    
    连接字符串
    //joining在内部使用了StringBuilder来把生成的字符串逐个追加起来
    String shortMenu = menu.stream().map(Dish::getName).collect(joning());
    //用逗号分隔
    String shortMenu2 = menu.stream().map(Dish::getName).collect(joning(","));
    
    广义的归约汇总
    int totalCalories = menu.stream().collect(reducing(0,Dish::getCalories,(i,j)->j+i));
    

    reducing需要说那个参数:

    1.起始值

    2.被操作的值

    3.是一个BinaryOperator,将两个项目累计成一个同类型的值

    同理,可以求最高热量的菜

    Optional<Dish> mostCalorieDish = menu.stream().collect(reducing(d1,d2)->d1.getCalories()>d2.getCalories()?d1:d2));
    
    分组
    Map<Dish.Type,List<Dish> dishesByType = menu.stream().collect(groupingBy(Dish::getType));
    

    复杂的分组

    public enum CaloricLevel{DIET,NORMAL,FAT}
    
    Map<CaloricLevel,List<Dish>> dishesByCaloricLevel = menu.stream().collect(
    	groupingBy(dish ->{
          	if(dish.getCalories()<=400) return CaloricLevel.DIET;
          	else if(dish.getCalories() <= 700) return CaloricLevel.NORMAL:
          	else return  CaloricLevel.FAT;
    	})
    );
    
    按子组收集数据
    Map<Dish.Type,Long> typesCount = menu.stream().collect(
    	groupingBy(Dish::getType,counting()));
    

    1.查找每个子组中热量最高的Dish

    Map<Dish.Type,Dish> mostCaloricByType = menu.stream().collect(groupingBy(Dish::getType,collectingAndThen(
    	maxBy(comparingInt(Dish::getCalories)),Optional::get)));
    

    2.对每组进行求和

    Map<Dish.Type,Integer> totalCaloriesByType = menu.stream().collect(groupingBy(Dish::getType,summingInt(Dish::getCalories)));
    

    3.groupingBy和mapping收集器结合起来

    Map<Dish.Type,Set<CaloricLevel>> caloricLevelsByType = menu.stream().collect(
    	groupingBy(Dish::getType,mapping(
    		dish -> {
              	if(dish.getCalories()<=400) return CaloricLevel.DIET;
              	else if (dish.getCalories <= 700) return CaloricLevel.NORMAL;
              	else return CaloricLevel.FAT,toSet()
    		}
    	))
    );
    

    分区:

    Map<Boolean , List<Dish>> partitionedMenu = menu.stream().collect(partitioningBy(Dish::isVegetarian));
    

    partitioningBy工厂方法有一个重载版本,可以传递第二收集器

    Map<Boolean,Map<Dish.Type,List<Dish>>> vegetarianDishesByType = menu.stream().collect(
    	partitioningBy(Dish::isVegetarian,groupingBy(Dish::getType)));
    

    还可以重用前面的代码来找到素食和非素食中热量最高的菜:

    Map<Boolean, Dish> mostVegetarian = menu.stream().collect(
    	menu.stream().collect(
        	partitioningBy(Dish::isVegetarian,
                          collectingAndThe(
                          		maxBy(comparingInt(Dish::getCalories)),
                          		Optional::get))));
    
    将数字按质数和非质数分区
    public boolean isPrime(int candidate){
      	return IntStream.range(2,candidate)//产生一个自然数范围,从2开始,直至但不包括待测数
          			.noneMatch(i -> candidate % i ==0);//如果待测数字不能被流中任何数字整除则返回true
    }
    
    //一个简单的优化是仅测试小于等于待测数平方根因子
    public boolean isPrime(int candidate) {
      int candidateRoot = (int) Math.sqrt(candidate);
      return IntStream.rangeClosed(2, candidate).noneMatch(i -> candidate % i == 0);
    }
    
    public Map<Boolean, List<Integer>> partitionPrimes(int n) {
      return IntStream.rangeClosed(2, n).boxed().collect(partitioningBy(candidate -> 				isPrime(candidate)));
    }
    

    Collectors类的静态工厂方法

    工厂方法 返回类型 用于
    toList List< T > 把流中所有项目收集到一个List
    List< Dish > dishes = menuStream.collect(toList());
    toSset Set< T > 把流中所有项目收集到一个Set,删除重复项
    Set< Dish > dishes = menuStream.collect(toSet());
    toCollection Collection< T > 把流中所有项目收集到给定的供应源创建的集合
    Collection< Dish > dishes = menuStream.collect(toCollection(),ArrayList::new);
    counting Long 计算流中元素的个数
    long howManyDishes = menuStream.collect(counting());
    summingInt Integer 对流中项目的一个整数属性求和
    int totalCalories = menuStream.collect(summingInt(Dish::getCalories));
    averagingInt Double 计算流中项目Integer属性的平均值
    double avgCalories = menuStream.collect(averagingInt(Dish::getCalories));
    summarizingInt IntSummaryStatistics 收集关于流中项目Integer属性的统计值,例如最大,最小,总和与平均值
    IntSummaryStatistics menuStaticstics = menuStream.collect(summarizingInt(Dish::getCalories));
    joining String 连接对流中每个项目调用toString方法生成的字符串
    String shortMenu = menuStream.map(Dish::getName).collect(joining(", "));
    maxBy Optional< T > 选出最大元素的Optional
    Optional< Dish > fattest = menuStream.collect(maxBy(comparingInt(Dish::getCalories)));
    minBy Optional< T > 最小元素
    Optional< Dish > fattest = menuStream.collect(minBy(comparingInt(Dish::getCalories)));
    reducing 归约操作产生的类型 利用BinaryOperator与流中的元素逐个结合,从而将流归约为单个值
    int totalCalories = menuStream.collect(reducing(0,Dish::getCalories,Integer::sum));
    collectingAndThen 转换函数返回的类型 包裹另一个收集器,对其结果应用转换函数
    int howManyDishes = menuStream.collect(collectingAndThe(toList(),List::size));
    groupingBy Map< K ,List< T > > 根据项目的一个属性的值对流中的项目作问组,并将属性值作为结果Map的键
    Map< Dish.Type,List< Dish>> dishesByType = menuStream.collect(groupingBy(Dish::getType));
    partitioningBy Map< Boolean,List< T>> 分区
    Map< Boolean, List< t>> vegetarianDishes = menuStream.collect(partitioningBy(Dish::isVegetarian));
  • 相关阅读:
    django添加检查用户名和手机号数量接口
    1.vue发送短信逻辑
    Celery 配置与基本使用 并且用celery 一步发送短信
    递归基础_并查集思想_二叉树最大深度问题
    递归基础_汉诺塔问题_经典的多状态问题_整体法/分两个函数互相递归
    递归基础_全排列+改写_组合数
    递归基础_组合数_输出的各种办法(递归)_(持续更新)
    关于gpu版本的tensorflow+anaconda的一些安装问题(持续更新)
    吴恩达课程笔记_1-1~1-4
    bfs和dfs辨析—基础复习(从stack和queue的角度来理解区别,加深理解,不再模糊)
  • 原文地址:https://www.cnblogs.com/luozhiyun/p/7993933.html
Copyright © 2020-2023  润新知