• B


    Description

    羽毛球队有男女运动员各n 人。给定2 个n×n 矩阵P 和Q。P[i][j]是男运动员i 和女运动员j配对组成混合双打的男运动员竞赛优势;Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势。由于技术配合和心理状态等各种因素影响,P[i][j]不一定等于Q[j][i]。男运动员i和女运动员j配对组成混合双打的男女双方竞赛优势为P[i][j]*Q[j][i]。
    设计一个算法,计算男女运动员最佳配对法,使各组男女双方竞赛优势的总和达到最大。
    设计一个算法,对于给定的男女运动员竞赛优势,计算男女运动员最佳配对法,使各组男女双方竞赛优势的总和达到最大。

    Input

    输入数据的第一行有1 个正整数n (1≤n≤20)。接下来的2n 行,每行n个数。前n行是p,后n行是q。

    Output

    将计算出的男女双方竞赛优势的总和的最大值输出。

    Sample

    Input

    3
    10 2 3
    2 3 4
    3 4 5
    2 2 2
    3 5 3
    4 5 1

    Output

    52

    题解:

    递归回溯找解问题,这个问题难点在于“剪枝”,如果没有这一步骤,会超时。
    至于“剪枝”,我们可以开辟一个新的数组,存储这两个运动员搭配时的竞赛优势,并且以男运动员为固定,找出与他的最佳搭配并记录最大竞赛优势。随后的递归中,如果剩下的人最大竞赛优势相加无法超过以得的最大值,那么就“剪枝”,结束递归。
    注意:这个代码是以男队员为固定进行搭配。

    #include <iostream>
    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #define maxn 25
    
    using namespace std;
    /**
    *n输入的数据大小
    *MAX寻找到的最大竞争优势
    *sum当前累加的竞赛优势
    */
    int n, MAX, sum;
    /**
    *p男方搭配优势
    *q女方搭配优势
    *f标记当前女方队员是否已经搭配
    *numMAX记录两个运动员搭配时的竞赛优势
    */
    int p[maxn][maxn], q[maxn][maxn], f[maxn], numMax[maxn];
    
    /**
    *i 搭配到第几名男队员。
    */
    void dfs(int i){
        //说明所有队员都已经找到搭配,结束。
        if(i==n){
            MAX = max(MAX, sum);
            return;
        }
        int j;
        int sum2 = sum;
        //计算当前累计的竞赛优势剩余的最佳搭配是否能够超过
        //最大已找到的最大竞赛优势,如果不能,剪枝,结束递归。
        for(j=i; j<n; j++){
            sum2 += numMax[j];
        }
        if(sum2 < MAX)
            return;
        for(j = 0; j<n; j++){
            //如果没有被标记,则说明当前女队员没有找到搭配,进行搭配。
            if(!f[j]){
                f[j] = 1;
                sum += p[i][j];
                dfs(i + 1);
                //回溯
                f[j] = 0;
                sum -= p[i][j];
            }
        }
    }
    
    int main()
    {
        int i, j;
        scanf("%d",&n);
        memset(numMax, -1, sizeof(numMax));
        for(i=0;i<n;i++){
            for(j=0;j<n;j++){
                scanf("%d",&p[i][j]);
                numMax[i] = max(numMax[i], p[i][j]);
            }
        }
        for(i=0;i<n;i++){
            for(j=0;j<n;j++){
                scanf("%d",&q[i][j]);
            }
        }
        for(i=0; i<n; i++){
            for(j=0; j<n; j++){
                p[i][j] = p[i][j] * q[j][i];
                numMax[i] = max(numMax[i], p[i][j]);
            }
            f[i] = 0;
        }
        memset(f, 0, sizeof(f));
        sum = 0;
        MAX = -1;
        dfs(0);
        printf("%d
    ",MAX);
        return 0;
    }
    
  • 相关阅读:
    crawlspider的源码学习
    df 参数说明
    Linux top 命令各参数详解
    Redis info参数总结
    python 读写 Excel文件
    python之Selenium库的使用
    heapq模块
    Python数据库连接池DButils
    【leetcode】701. Insert into a Binary Search Tree
    【leetcode】940. Distinct Subsequences II
  • 原文地址:https://www.cnblogs.com/luoxiaoyi/p/13854144.html
Copyright © 2020-2023  润新知