• hdu3507_斜率dp


    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3507

    Print Article

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 9699    Accepted Submission(s): 3066


    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5 5 9 5 7 5
     
    Sample Output
    230

    推荐博客:http://blog.csdn.net/azheng51714/article/details/8214165

     1 //dp[i]=dp[j]+M+(sum[i]-sum[j])^2
     2 //设k<j<i, j比k决策好
     3 //dp[j]+M+(sum[i]-sum[j])^2<dp[k]+M+(sum[i]-sum[k])^2
     4 //(dp[j]+num[j]^2-(dp[k]+num[k]^2))/(2*(num[j]-num[k]))<sum[i]
     5 //dp[j]+num[j]^2-(dp[k]+num[k]^2))  GetUp()
     6 //2*(num[j]-num[k])  GetDown()
     7 #include <algorithm>
     8 #include <iostream>
     9 #include <cstring>
    10 #include <cstdlib>
    11 #include <cstdio>
    12 #include <vector>
    13 #include <ctime>
    14 #include <queue>
    15 #include <list>
    16 #include <set>
    17 #include <map>
    18 using namespace std;
    19 #define INF 0x3f3f3f3f
    20 typedef long long LL;
    21 
    22 int dp[500010], n, m, sum[500010], q[500010];
    23 int GetDp(int i, int j)
    24 {
    25     return dp[j] + m + (sum[i]-sum[j])*(sum[i]-sum[j]);
    26 }
    27 int GetUp(int j, int k)//yj-yk的部分
    28 {
    29     return dp[j] + sum[j]*sum[j] - (dp[k]+sum[k]*sum[k]);
    30 }
    31 int GetDown(int j, int k)//xj-xk的部分
    32 {
    33     return 2 * (sum[j] - sum[k]);
    34 }
    35 int main()
    36 {
    37     while(~scanf("%d %d", &n, &m))
    38     {
    39         sum[0] = dp[0] = 0;
    40         for(int i = 1; i <= n; i++){
    41             scanf("%d", &sum[i]);
    42             sum[i] += sum[i-1];
    43         }
    44         int head = 0, tail = 0;
    45         q[tail++] = 0;
    46         for(int i = 1; i <=n; i++)
    47         {
    48             while(head+1<tail && GetUp(q[head+1],q[head])<=sum[i]*GetDown(q[head+1],q[head]))
    49                 head++;
    50             dp[i] = GetDp(i, q[head]);
    51             while(head+1<tail && GetUp(i, q[tail-1])*GetDown(q[tail-1],q[tail-2])<=GetUp(q[tail-1],q[tail-2])*GetDown(i,q[tail-1]))
    52                 tail--;
    53             q[tail++] = i;
    54         }
    55         printf("%d
    ", dp[n]);
    56     }
    57     return 0;
    58 }
    View Code
  • 相关阅读:
    进程管理 2
    进程管理 1
    Linux进程
    分配swap分区
    磁盘分区与挂载
    文件系统常用命令
    多线程
    系统hosts文件的作用
    sql 连接查询的区别 inner,left,right,full
    sql 游标
  • 原文地址:https://www.cnblogs.com/luomi/p/5867993.html
Copyright © 2020-2023  润新知