• 一个mapreduce得到需要计算单词概率的基础数据


    第一步,先计算需要计算概率的词频,单词种类数,类别单词总数(类别均是按照文件夹名区分)(基础数据以及分词了,每个单词一行,以及预处理好)

    package org.lukey.hadoop.classifyBayes;
    
    import java.io.IOException;
    import java.net.URI;
    import java.util.ArrayList;
    import java.util.HashMap;
    import java.util.List;
    import java.util.Map;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FSDataOutputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IOUtils;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    
    import org.apache.hadoop.mapreduce.Counter;
    import org.apache.hadoop.mapreduce.Counters;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.input.FileSplit;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
    
    /**
     * 
     * 一次将需要的结果都统计到对应的文件夹中 AFRICA 484017newsML.txt afford 1
     * 
     * 按照这个格式输出给后面处理得到需要的: 1. AFRICA 484017newsML.txt AFRICA 487141newsML.txt
     * 类别中的文本数, ---> 计算先验概率(单独解决这个) 所有类别中的文本总数, ---> 可以由上面得到,计算先验概率
     * 
     * 2. AFRICA afford 1 AFRICA boy 3 每个类中的每个单词的个数,---> 计算各个类中单词的概率
     * 
     * 3. AFRICA 768 类中单词总数, ---> 将2中的第一个key相同的第三个数相加即可
     * 
     * 4. AllWORDS 12345 所有类别中单词种类数 ---> 将1中的第三个key归并,计算个数
     *
     */
    
    public class MyWordCount {
    
        private static MultipleOutputs<Text, IntWritable> mos;
        static String baseOutputPath = "/user/hadoop/test_out";
    
        // 设计两个map分别计算每个类别的文本数//和每个类别的单词总数
        private static Map<String, List<String>> fileCountMap = new HashMap<String, List<String>>();
        private static Map<String, Integer> fileCount = new HashMap<String, Integer>();
        // static Map<String, List<String>> wordsCountInClassMap = new
        // HashMap<String, List<String>>();
    
        static enum WordsNature {
            CLSASS_NUMBER, CLASS_WORDS, TOTALWORDS
        }
    
        public static void main(String[] args) throws Exception {
    
            Configuration conf = new Configuration();
    
            // 设置不同文件的路径
            // 文本数路径
            String priorProbality = "hdfs://192.168.190.128:9000/user/hadoop/output/priorP/priorProbality.txt";
            conf.set("priorProbality", priorProbality);
    
            String[] otherArgs = { "/user/hadoop/input/NBCorpus/Country", "/user/hadoop/mid/wordsFre" };
    
            Job job = new Job(conf, "file count");
    
            job.setJarByClass(MyWordCount.class);
    
            // job.setInputFormatClass(CustomInputFormat.class);
    
            job.setMapperClass(First_Mapper.class);
            job.setReducerClass(First_Reducer.class);
    
            //过滤掉文本数少于10的类别
            List<Path> inputPaths = getSecondDir(conf, otherArgs[0]);
            for (Path path : inputPaths) {
                FileInputFormat.addInputPath(job, path);
            }
    
            // 调用自己写的方法
    //        MyUtils.addInputPath(job, inputpath, conf);
            // CustomInputFormat.setInputPaths(job, inputpath);
            // FileInputFormat.addInputPath(job, inputpath);
            FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
    
            int exitCode = job.waitForCompletion(true) ? 0 : 1;
    
            // 调用计数器
            Counters counters = job.getCounters();
            Counter c1 = counters.findCounter(WordsNature.TOTALWORDS);
            System.out.println("-------------->>>>: " + c1.getDisplayName() + ":" + c1.getName() + ": " + c1.getValue());
    
            // 将单词种类数写入文件中
            Path totalWordsPath = new Path("/user/hadoop/output/totalwords.txt");
            FileSystem fs = FileSystem.get(conf);
            FSDataOutputStream outputStream = fs.create(totalWordsPath);
            outputStream.writeBytes(c1.getDisplayName() + ":" + c1.getValue());
            IOUtils.closeStream(outputStream);
    
    
            
            
            // 下次求概率是尝试单词总种类数写到configuration中
            //
            // conf.set("TOTALWORDS", totalWords.toString());
    
            System.exit(exitCode);
    
        }
    
        // Mapper
        static class First_Mapper extends Mapper<LongWritable, Text, Text, IntWritable> {
    
            private final static IntWritable one = new IntWritable(1);
            private final static IntWritable zero = new IntWritable(0);
    
            private Text className = new Text();
            private Text countryName = new Text();
    
            @Override
            protected void cleanup(Mapper<LongWritable, Text, Text, IntWritable>.Context context)
                    throws IOException, InterruptedException {
                Configuration conf = context.getConfiguration();
                String file = conf.get("priorProbality");
                FileSystem fs = FileSystem.get(URI.create(file), conf);
                Path priorPath = new Path(file);
                FSDataOutputStream priorStream = fs.create(priorPath);
                for (Map.Entry<String, List<String>> entry : fileCountMap.entrySet()) {
                    fileCount.put(entry.getKey(), entry.getValue().size());
                    priorStream.writeBytes(entry.getKey() + "	" + entry.getValue().size());
                }
    
                // 求文本总数
                int fileSum = 0;
                for (Integer num : fileCount.values()) {
                    fileSum += num;
                }
                System.out.println("fileSum = " + fileSum);
    
                // 计算每个类的先验概率并写入文件
                for (Map.Entry<String, Integer> entry : fileCount.entrySet()) {
                    double p = (double) entry.getValue() / fileSum;
                    priorStream.writeBytes(entry.getKey() + ":" + p);
                }
                IOUtils.closeStream(priorStream);
    
            }
    
            
            @Override
            protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
                    throws IOException, InterruptedException {
                // TODO Auto-generated method stub
                FileSplit fileSplit = (FileSplit) context.getInputSplit();
    
                // 文件名
                String fileName = fileSplit.getPath().getName();
    
                // 文件夹名(即类别名)
                String dirName = fileSplit.getPath().getParent().getName();
    
                className.set(dirName + "	" + value.toString());
                countryName.set(dirName + "	" + fileName + "	" + value.toString());
    
                // 将文件名添加到map中用于统计文本个数(单独跑了一个程序计算主要还是为了筛选文本数太少的类别)
                if (fileCountMap.containsKey(dirName)) {
                    if (!fileCountMap.get(dirName).contains(fileName)) {
                        fileCountMap.get(dirName).add(fileName);
                    }
                } else {
                    List<String> oneList = new ArrayList<String>();
                    oneList.add(fileName);
                    fileCountMap.put(dirName, oneList);
                }
    
                context.write(className, one); // 每个类别的每个单词数 // ABDBI hello 1
                context.write(new Text(dirName), one);// 统计每个类中的单词总数 //ABDBI 1
                context.write(value, zero); // 用于统计所有类中单词个数
    
            }
        }
    
        // Reducer
        static class First_Reducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    
            // result 表示每个类别中每个单词的个数
            IntWritable result = new IntWritable();
            Map<String, List<String>> classMap = new HashMap<String, List<String>>();
            Map<String, List<String>> fileMap = new HashMap<String, List<String>>();
    
            @Override
            protected void reduce(Text key, Iterable<IntWritable> values,
                    Reducer<Text, IntWritable, Text, IntWritable>.Context context)
                            throws IOException, InterruptedException {
                int sum = 0;
                for (IntWritable value : values) {
                    sum += value.get();
                }
    
                // sum为0,总得单词数加1,统计所有单词的种类
                if (sum == 0) {
                    context.getCounter(WordsNature.TOTALWORDS).increment(1);
                } else {// sum不为0时,通过key的长度来判断,
                    String[] temp = key.toString().split("	");
                    if (temp.length == 2) { // 用tab分隔类别和单词
                        result.set(sum);
                        context.write(key, result);
                        // mos.write(new Text(temp[1]), result, temp[0]);
                    } else { // 类别中单词总数
                        result.set(sum);
                        mos.write(key, result, "wordsInClass");
                    }
    
                }
    
            }
    
            @Override
            protected void cleanup(Reducer<Text, IntWritable, Text, IntWritable>.Context context)
                    throws IOException, InterruptedException {
                // TODO Auto-generated method stub
                mos.close();
            }
    
            @Override
            protected void setup(Reducer<Text, IntWritable, Text, IntWritable>.Context context)
                    throws IOException, InterruptedException {
                // TODO Auto-generated method stub
                mos = new MultipleOutputs<Text, IntWritable>(context);
            }
    
        }
        
        
        // 获取文件夹下面二级文件夹路径的方法
            static List<Path> getSecondDir(Configuration conf, String folder) throws Exception {
                FileSystem fs = FileSystem.get(conf);
                Path path = new Path(folder);
                FileStatus[] stats = fs.listStatus(path);
                List<Path> folderPath = new ArrayList<Path>();
                for (FileStatus stat : stats) {
                    if (stat.isDir()) {
                        if (fs.listStatus(stat.getPath()).length > 10) {    //筛选出文件数大于10个的类别作为 输入路径
                            folderPath.add(stat.getPath());
                        }
                    }
                }
                return folderPath;
            }
    
    
    }
    View Code

    第二步,计算每个类别单词的概率,需提前读取每个类别单词总数,以及总得单词种类数(都可以通过configuration.set)也可以在setup里面先于map处理前读取数据。

    package org.lukey.hadoop.classifyBayes;
    
    import java.io.BufferedReader;
    import java.io.IOException;
    import java.io.InputStreamReader;
    import java.net.URI;
    import java.util.HashMap;
    import java.util.Map;
    
    import org.apache.commons.logging.Log;
    import org.apache.commons.logging.LogFactory;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.DoubleWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
    
    public class Probability {
    
        private static final Log LOG = LogFactory.getLog(FileInputFormat.class);
        public static int total = 0;
        private static MultipleOutputs<Text, DoubleWritable> mos;
    
        // Client
        public static void main(String[] args) throws Exception {
    
            Configuration conf = new Configuration();
            conf.set("mapred.job.tracker", "192.168.190.128:9001");
            conf.set("mapred.jar", "probability.jar");
            // 读取单词总数,设置到congfiguration中
            String totalWordsPath = "hdfs://192.168.190.128:9000/user/hadoop/output/totalwords.txt";
            String wordsInClassPath = "hdfs://192.168.190.128:9000/user/hadoop/mid/wordsFrequence/wordsInClass-r-00000";
    
            conf.set("wordsInClassPath", wordsInClassPath);
            // Map<String, Integer> wordsInClassMap = new HashMap<String,
            // Integer>();//保存每个类别的单词总数
    
            // 先读取单词总类别数
            FileSystem fs = FileSystem.get(URI.create(totalWordsPath), conf);
            FSDataInputStream inputStream = fs.open(new Path(totalWordsPath));
            BufferedReader buffer = new BufferedReader(new InputStreamReader(inputStream));
            String strLine = buffer.readLine();
            String[] temp = strLine.split(":");
            if (temp.length == 2) {
                // temp[0] = TOTALWORDS
                conf.set(temp[0], temp[1]);// 设置两个String
            }
    
            total = Integer.parseInt(conf.get("TOTALWORDS"));
            LOG.info("------>total = " + total);
    
            System.out.println("total ==== " + total);
            /*
             * String[] otherArgs = new GenericOptionsParser(conf,
             * args).getRemainingArgs();
             * 
             * if (otherArgs.length != 2) { System.out.println("Usage <in> <out>");
             * System.exit(-1); }
             */
            Job job = new Job(conf, "file count");
    
            job.setJarByClass(Probability.class);
    
            job.setMapperClass(WordsOfClassCountMapper.class);
            job.setReducerClass(WordsOfClassCountReducer.class);
    
            String input = "hdfs://192.168.190.128:9000/user/hadoop/mid/wordsFrequence";
            String output = "hdfs://192.168.190.128:9000/user/hadoop/output/probability/";
    
            FileInputFormat.addInputPath(job, new Path(input));
            FileOutputFormat.setOutputPath(job, new Path(output));
    
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(DoubleWritable.class);
    
            System.exit(job.waitForCompletion(true) ? 0 : 1);
    
        }
    
        // Mapper
        static class WordsOfClassCountMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> {
    
            private static DoubleWritable number = new DoubleWritable();
            private static Text className = new Text();
    
            // 保存类别中单词总数
            private static Map<String, Integer> filemap = new HashMap<String, Integer>();
    
            protected void map(LongWritable key, Text value,
                    Mapper<LongWritable, Text, Text, DoubleWritable>.Context context)
                            throws IOException, InterruptedException {
                Configuration conf = context.getConfiguration();
                int tot = Integer.parseInt(conf.get("TOTALWORDS"));
    
                System.out.println("total = " + total);
                System.out.println("tot = " + tot);
    
                // 输入的格式如下:
                // ALB weekend 1
                // ALB weeks 3
                Map<String, Map<String, Integer>> baseMap = new HashMap<String, Map<String, Integer>>(); // 保存基础数据
                // Map<String, Map<String, Double>> priorMap = new HashMap<String,
                // Map<String, Double>>(); // 保存每个单词出现的概率
    
                String[] temp = value.toString().split("	");
                // 先将数据存到baseMap中
                if (temp.length == 3) {
                    // 文件夹名类别名
                    if (baseMap.containsKey(temp[0])) {
                        baseMap.get(temp[0]).put(temp[1], Integer.parseInt(temp[2]));
                    } else {
                        Map<String, Integer> oneMap = new HashMap<String, Integer>();
                        oneMap.put(temp[1], Integer.parseInt(temp[2]));
                        baseMap.put(temp[0], oneMap);
                    }
    
                } // 读取数据完毕,全部保存在baseMap中
    
                int allWordsInClass = 0;
                
    
                for (Map.Entry<String, Map<String, Integer>> entries : baseMap.entrySet()) { // 遍历类别
                    allWordsInClass = filemap.get(entries.getKey());
                    for (Map.Entry<String, Integer> entry : entries.getValue().entrySet()) { // 遍历类别中的单词词频求概率
                        double p = (entry.getValue() + 1.0) / (allWordsInClass + tot);
    
                        className.set(entries.getKey() + "	" + entry.getKey());
                        number.set(p);
                        LOG.info("------>p = " + p);
    
                        context.write(className, number);
                    }
                }
    
            }
    
            protected void cleanup(Mapper<LongWritable, Text, Text, DoubleWritable>.Context context)
                    throws IOException, InterruptedException {
                // TODO Auto-generated method stub
                mos.close();
            }
    
            protected void setup(Mapper<LongWritable, Text, Text, DoubleWritable>.Context context)
                    throws IOException, InterruptedException {
                // TODO Auto-generated method stub
                Configuration conf = context.getConfiguration();
                mos = new MultipleOutputs<Text, DoubleWritable>(context);
                String filePath = conf.get("wordsInClassPath");
                FileSystem fs = FileSystem.get(URI.create(filePath), conf);
                FSDataInputStream inputStream = fs.open(new Path(filePath));
                BufferedReader buffer = new BufferedReader(new InputStreamReader(inputStream));
                String strLine = null;
                while ((strLine = buffer.readLine()) != null) {
                    String[] temp = strLine.split("	");
                    filemap.put(temp[0], Integer.parseInt(temp[1]));
                }
            }
    
        }
    
        // Reducer
        static class WordsOfClassCountReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable> {
    
            // result 表示每个文件里面单词个数
            DoubleWritable result = new DoubleWritable();
            // Configuration conf = new Configuration();
            // int total = conf.getInt("TOTALWORDS", 1);
    
            protected void reduce(Text key, Iterable<DoubleWritable> values,
                    Reducer<Text, DoubleWritable, Text, DoubleWritable>.Context context)
                            throws IOException, InterruptedException {
    
                double sum = 0L;
                for (DoubleWritable value : values) {
                    sum += value.get();
                }
                result.set(sum);
    
                context.write(key, result);
            }
    
        }
    
    }
    View Code
  • 相关阅读:
    使用element-ui是下拉筛选选择
    vue 组件传值
    vue element 地址联动的使用
    vux scroller
    实时监听组件中路由的变化
    vuex的使用
    对移动端滚动高度的获取
    【转】ACM 取石子问题
    【转】ACM博弈知识汇总
    EOJ 2857 编辑距离
  • 原文地址:https://www.cnblogs.com/luolizhi/p/4944760.html
Copyright © 2020-2023  润新知