• Python绘制任意两点剖面图


    metpy中的cross_section提供了非常便捷的绘制剖面图的方法,具体可见网:
    
    https://unidata.github.io/MetPy/latest/examples/cross_section.html#sphx-glr-examples-cross-section-py

    如果只是简单的画个抛面                                     

    # %%
    import xarray as xr
    import proplot as pplt
    from metpy.interpolate import cross_section
    # %%
    era5fnm = r'F:/era5/era5_2021071900_2021072023/era5_2021071900UTC.nc'
    era5f = xr.open_dataset(era5fnm)
    era5f = era5f.metpy.parse_cf().squeeze()
    # %%
    # create cross section
    start = (12.0, 96.0)
    end = (27.0, 120.0)
    cross = cross_section(era5f, start, end)
    # %%
    fig = pplt.figure(
        refwidth = 5.0,
        )
    ax = fig.subplot(
        )
    # plot cross section
    ax.contourf(
        cross['g0_lat_2'],
        cross['lv_ISBL1'][::-1],
        cross['V_GDS0_ISBL'][::-1, :],
        )
    ax.quiver(
        cross['g0_lat_2'][::4],
        cross['lv_ISBL1'][::-1],
        cross['V_GDS0_ISBL'][::-1, ::4],
        cross['W_GDS0_ISBL'][::-1, ::4]*10.,
        )

    如果你想要为剖面添加地形并且显示剖面的平面位置和一些场变量 

    # %%
    import xarray as xr
    import proplot as pplt
    from metpy.interpolate import cross_section
    import cartopy.crs as ccrs
    import cartopy.feature as cfeat
    from cartopy.io.shapereader import Reader
    # %%
    era5fnm = r'F:/era5/era5_2021071900_2021072023/era5_2021071900UTC.nc'
    era5f = xr.open_dataset(era5fnm)
    era5f = era5f.metpy.parse_cf().squeeze()
    terfnm = r'F:/terrain/dixingdata.nc'
    terf = xr.open_dataset(terfnm)
    terf = terf.metpy.parse_cf().squeeze()
    c = terf['Y'].loc[30:10]
    # %%
    # create cross section
    start = (12.0, 96.0)
    end = (27.0, 120.0)
    cross = cross_section(era5f, start, end)
    tercross = cross_section(terf, start, end)
    # %%
    fig = pplt.figure(
        refwidth = 5.0,
        )
    ax = fig.subplot(
        )
    # plot cross section
    ax.contourf(
        cross['g0_lat_2'],
        cross['lv_ISBL1'][::-1],
        cross['V_GDS0_ISBL'][::-1, :],
        )
    ax.quiver(
        cross['g0_lat_2'][::4],
        cross['lv_ISBL1'][::-1],
        cross['V_GDS0_ISBL'][::-1, ::4],
        cross['W_GDS0_ISBL'][::-1, ::4]*10.,
        )
    # plot terrain
    oy = ax.alty()
    oy.area(
        cross['g0_lat_2'],
        tercross['elev'],
        c = 'grey',
        )
    oy.format(
        ylim = (0, 10000),
        yticks = 'none',
        ylabel = '',
        )
    # plot inset panel
    data_crs = era5f['V_GDS0_ISBL'].metpy.cartopy_crs
    ix = fig.add_axes(              # do note that using ax.inset() of proplot will cause a geo stale error
        [0.105, 0.685, 0.4, 0.3],   # thus using fig.add_axes alternatively
        projection = data_crs,
        )
    ix.format(
        lonlim = (95, 125),
        latlim = (10, 30),
        )
    ix.contour(
        era5f['g0_lon_3'].loc[95:125],
        era5f['g0_lat_2'].loc[10:30],
        era5f['Z_GDS0_ISBL'].loc[850, 10:30, 95:125],
        c = 'blue',
        )
    ix.line(
        cross['g0_lon_3'],
        cross['g0_lat_2'],
        c = 'red',
        )
    # add geographic information
    ix.coastlines()
    provinces = cfeat.ShapelyFeature(
        Reader(r'F:/ngcc/bou2_4m/bou2_4l.shp').geometries(),
        ccrs.PlateCarree(), 
        edgecolor='black',
        facecolor='none',
        )
    river = cfeat.ShapelyFeature(
        Reader(r'F:/Chinamap-master/cnmap/rivers.shp').geometries(),
        ccrs.PlateCarree(), 
        edgecolor='lightblue',
        facecolor='none',
        )
    ix.add_feature(provinces, linewidth=0.5, zorder=2)
    ix.add_feature(river, linewidth=1.0, zorder=2)

    参考 https://mp.weixin.qq.com/s?__biz=MzA4MTAzMjQzMQ==&mid=2651703908&idx=1&sn=dcd98d180acdc604bf258a49eae80fd8&chksm=84624fe4b315c6f204db162278870c2e5ad35c22e681310c837239326eeefc8f1240d668c3a7#rd   出自气象家园

  • 相关阅读:
    Python Redis 五大数据类型
    Python 魔法方法
    Python 静态方法,类方法,属性方法
    Python 反射
    Python 中 封装,继承,多态
    Redis 事务
    Redis 哨兵集群
    装饰器,迭代器,生成器
    Flume与kafka集成
    hbase 可视化工具 HBaseXplorer---HbaseGUI
  • 原文地址:https://www.cnblogs.com/luochunxi/p/15724468.html
Copyright © 2020-2023  润新知