metpy中的cross_section提供了非常便捷的绘制剖面图的方法,具体可见网: https://unidata.github.io/MetPy/latest/examples/cross_section.html#sphx-glr-examples-cross-section-py
如果只是简单的画个抛面
# %% import xarray as xr import proplot as pplt from metpy.interpolate import cross_section # %% era5fnm = r'F:/era5/era5_2021071900_2021072023/era5_2021071900UTC.nc' era5f = xr.open_dataset(era5fnm) era5f = era5f.metpy.parse_cf().squeeze() # %% # create cross section start = (12.0, 96.0) end = (27.0, 120.0) cross = cross_section(era5f, start, end) # %% fig = pplt.figure( refwidth = 5.0, ) ax = fig.subplot( ) # plot cross section ax.contourf( cross['g0_lat_2'], cross['lv_ISBL1'][::-1], cross['V_GDS0_ISBL'][::-1, :], ) ax.quiver( cross['g0_lat_2'][::4], cross['lv_ISBL1'][::-1], cross['V_GDS0_ISBL'][::-1, ::4], cross['W_GDS0_ISBL'][::-1, ::4]*10., )
如果你想要为剖面添加地形并且显示剖面的平面位置和一些场变量
# %% import xarray as xr import proplot as pplt from metpy.interpolate import cross_section import cartopy.crs as ccrs import cartopy.feature as cfeat from cartopy.io.shapereader import Reader # %% era5fnm = r'F:/era5/era5_2021071900_2021072023/era5_2021071900UTC.nc' era5f = xr.open_dataset(era5fnm) era5f = era5f.metpy.parse_cf().squeeze() terfnm = r'F:/terrain/dixingdata.nc' terf = xr.open_dataset(terfnm) terf = terf.metpy.parse_cf().squeeze() c = terf['Y'].loc[30:10] # %% # create cross section start = (12.0, 96.0) end = (27.0, 120.0) cross = cross_section(era5f, start, end) tercross = cross_section(terf, start, end) # %% fig = pplt.figure( refwidth = 5.0, ) ax = fig.subplot( ) # plot cross section ax.contourf( cross['g0_lat_2'], cross['lv_ISBL1'][::-1], cross['V_GDS0_ISBL'][::-1, :], ) ax.quiver( cross['g0_lat_2'][::4], cross['lv_ISBL1'][::-1], cross['V_GDS0_ISBL'][::-1, ::4], cross['W_GDS0_ISBL'][::-1, ::4]*10., ) # plot terrain oy = ax.alty() oy.area( cross['g0_lat_2'], tercross['elev'], c = 'grey', ) oy.format( ylim = (0, 10000), yticks = 'none', ylabel = '', ) # plot inset panel data_crs = era5f['V_GDS0_ISBL'].metpy.cartopy_crs ix = fig.add_axes( # do note that using ax.inset() of proplot will cause a geo stale error [0.105, 0.685, 0.4, 0.3], # thus using fig.add_axes alternatively projection = data_crs, ) ix.format( lonlim = (95, 125), latlim = (10, 30), ) ix.contour( era5f['g0_lon_3'].loc[95:125], era5f['g0_lat_2'].loc[10:30], era5f['Z_GDS0_ISBL'].loc[850, 10:30, 95:125], c = 'blue', ) ix.line( cross['g0_lon_3'], cross['g0_lat_2'], c = 'red', ) # add geographic information ix.coastlines() provinces = cfeat.ShapelyFeature( Reader(r'F:/ngcc/bou2_4m/bou2_4l.shp').geometries(), ccrs.PlateCarree(), edgecolor='black', facecolor='none', ) river = cfeat.ShapelyFeature( Reader(r'F:/Chinamap-master/cnmap/rivers.shp').geometries(), ccrs.PlateCarree(), edgecolor='lightblue', facecolor='none', ) ix.add_feature(provinces, linewidth=0.5, zorder=2) ix.add_feature(river, linewidth=1.0, zorder=2)