• 深入浅出计算机组成原理学习笔记:第十六讲


    你是不是感到很疑惑,浮点数的近似值究竟是怎么算出来的?浮点数的加法计算又是怎么回事儿?在实践应用中,我们怎么才用好浮点数呢?这一节,我们就一起来看这几个问题

    一、浮点数的二进制转换

    1、十进制浮点数9.1

    2、小数的二进制表示是怎么回事

    3、浮点数其实是用二进制的科学计数法来表示的

    4、为什么0.3+0.6=0.899999?

    二、浮点数的加法和精度

    1、浮点数的加法原理

    2、比如0.5,表示成浮点数

    实现这样一个加法,也只需要位移。和整数加法类似的半加器和全加器的方法就能够实现,在电路层面,也并没有引入太多新的复杂性。

    3、这个加法计算的浮点数的结果是不是正确

    1、先对齐

    2、在加法发生之前,就丢失精度

    3、32位浮点数的加法

    你可以试一下,我下面用一个简单的Java程序,让一个值为2000万的32位浮点数和1相加,你会发现,+1这个过程因为精度损失,被“完全抛弃”了。

    public class FloatPrecision {
      public static void main(String[] args) {
        float a = 20000000.0f;
        float b = 1.0f;
        float c = a + b;
        System.out.println("c is " + c);
        float d = c - a;
        System.out.println("d is " + d);
      }
    }
    

    对应的输出结果就是:

    c is 2.0E7
    d is 0.0

    三、Kahan Summation算法

    那么,我们有没有什么办法来解决这个精度丢失问题呢?虽然我们在计算浮点数的时候,常常可以容忍一定的精度损失,但是像上面那样,
    如果我们连续加2000万个1,2000万的数值都会被精度损失丢掉了,就会影响我们的计算结果。

    在机器学习中的应用

    我们可以做一个简单的实验,用一个循环相加2000万个1.0f,最终的结果会是1600万左右,而不是2000万。这是因为,

    加到1600万之后的加法因为精度丢失都没有了。这个代码比起上面的使用2000万来加1.0更具有现实意义。

    public class FloatPrecision {
      public static void main(String[] args) {
        float sum = 0.0f;
        for (int i = 0; i < 20000000; i++) {
        	float x = 1.0f;
        	sum += x;    	
        }
        System.out.println("sum is " + sum);   
      }	
    }
    

    对应的输出结果是:

    sum is 1.6777216E7
    

    面对这个问题,聪明的计算机科学家们也想出了具体的解决办法。他们发明了一种叫作Kahan Summation的算法来解决这个问题。

    算法的对应代码我也放在文稿中了。从中你可以看到,同样是2000万个1.0f相加,用这种算法我们得到了准确的2000万的结果

    public class KahanSummation {
      public static void main(String[] args) {
        float sum = 0.0f;
        float c = 0.0f;
        for (int i = 0; i < 20000000; i++) {
        	float x = 1.0f;
        	float y = x - c;
        	float t = sum + y;
        	c = (t-sum)-y;
        	sum = t;    	
        }
        System.out.println("sum is " + sum);   
      }	
    }
    

    对应的输出结果是:

    sum is 1.6777216E7
    

    其实这个算法的原理其实并不复杂,就是在每次的计算过程中,都用一次减法,把当前加法计算中损失的精度记录下来,然后在后面的循环中,把这个精度损失放在要加的小数上,再做一次运算。

    如果你对这个背后的数学原理特别感兴趣,可以去看一看Wikipedia链接里面对应的数学证明,也可以生成一些数据试一试这个算法。这个方法在实际的数值计算中也是常用的,也是大量数据累加

    中,解决浮点数精度带来的“大数吃小数”问题的必备方案

    四、总结延伸

    1、浮点数的缺点

    2、浮点数不适合的场景

    3、浮点的应用场景

  • 相关阅读:
    分享免费的jQuery Mobile Wordpress主题 jQMobile
    分享50个使用非比寻常导航菜单设计的创意网站
    分享一个超酷javascript全屏幻灯导航(fullscreen slide navigation)
    分享一款jQuery的UI插件:Ninja UI
    使用jQuery开发一个超酷的倒计时效果
    分享使用jQuery和CSS实现的一个超酷缩略图悬浮逼近效果
    Nosql数据库教程之初探MongoDB 第一部分
    分享一个使一行文字变形产生弯曲弧度特效的jQuery插件 Arctext.js
    分享2011年12月的11个最棒的jQuery插件
    分享8个最新的javascript脚本资源
  • 原文地址:https://www.cnblogs.com/luoahong/p/11321590.html
Copyright © 2020-2023  润新知