// Tarjan算法求有向图强连通分量并缩点
/*强连通缩点与双连通缩点大同小异,也就是说将强连通分支缩成一个点之后,没有强连通,成为有向无环图,在对图进行题目的操作。*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int N = 100010, M = 1000010;
int ver[M], Next[M], head[N], dfn[N], low[N];
int stack[N], ins[N], c[N];
int vc[M], nc[M], hc[N], tc;
vector<int> scc[N];
int n, m, tot, num, top, cnt;
void add(int x, int y) {
ver[++tot] = y, Next[tot] = head[x], head[x] = tot;
}
void add_c(int x, int y) {
vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc;
}
void tarjan(int x) {
dfn[x] = low[x] = ++num;
stack[++top] = x, ins[x] = 1;
for (int i = head[x]; i; i = Next[i])
if (!dfn[ver[i]]) {
tarjan(ver[i]);
low[x] = min(low[x], low[ver[i]]);
}
else if (ins[ver[i]])
low[x] = min(low[x], dfn[ver[i]]);
if (dfn[x] == low[x]) {
cnt++; int y;
do {
y = stack[top--], ins[y] = 0;
c[y] = cnt, scc[cnt].push_back(y);
} while (x != y);
}
}
int main() {
cin >> n >> m;
for (int i = 1; i <= m; i++) {
int x, y;
scanf("%d%d", &x, &y);
add(x, y);
}
for (int i = 1; i <= n; i++)
if (!dfn[i]) tarjan(i);
for (int x = 1; x <= n; x++)
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];
if (c[x] == c[y]) continue;
add_c(c[x], c[y]);
}
}