• 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)


    先放知识点:
    莫比乌斯反演
    卢卡斯定理求组合数
    乘法逆元
    快速幂取模

    GCD of Sequence

     Alice is playing a game with Bob.
    Alice shows N integers a 1, a 2,, a N, and M, K. She says each integers 1 ≤ a i ≤ M.
    And now Alice wants to ask for each d = 1 to M, how many different sequences b 1, b 2,, b N. which satisfies :
    1. For each i = 1N, 1 ≤ b[i]M
    2. gcd(b 1, b 2,, b N) = d
    3. There will be exactly K position i that ai != bi (1 ≤ i ≤ n)
    
    Alice thinks that the answer will be too large. In order not to annoy Bob, she only wants to know the answer modulo 1000000007.Bob can not solve the problem. Now he asks you for HELP!
    Notes: gcd(x 1, x 2,, x n) is the greatest common divisor of x 1, x 2,, x n 
     
    

    Input

    The input contains several test cases, terminated by EOF.
    The first line of each test contains three integers N, M, K. (1N, M300000, 1KN)
    The second line contains N integers: a 1, a 2,, a n (1 ≤ a i ≤ M) which is original sequence.
    

    Output

    For each test contains 1 lines :
    The line contains M integer, the i-th integer is the answer shows above when d is the i-th number.
    
    

    Sample Input

    3 3 3
    3 3 3
    3 5 3
    1 2 3
    1
    2
    3
    4
    

    Sample Output

    7 1 0
    59 3 0 1 1
    1
    2
    

    Hint

    In the first test case :
    when d = 1, {b} can be :
    (1, 1, 1)
    (1, 1, 2)
    (1, 2, 1)
    (1, 2, 2)
    (2, 1, 1)
    (2, 1, 2)
    (2, 2, 1)
    when d = 2, {b} can be :
    (2, 2, 2)
    And because {b} must have exactly K number(s) different from {a}, so {b} can't be (3, 3, 3), so Answer = 0
    

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    卢卡斯求组合数是log级别的所以没问题

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 310000;
    const int mod = 1000000007;
    int n, m, k;
    int prime[maxn], tot, mu[maxn]; //莫比乌斯函数
    bool vis[maxn];
    long long fac[maxn], rev[maxn]; //乘法逆元,和卢卡斯定理
    long long F[maxn], f[maxn];     //莫比乌斯反演
    int a[maxn];
    int cnt[maxn]; //对于d,有多少a[i]是d的倍数
    long long extend_gcd(long long a, long long b, long long &x, long long &y)
    {
        //扩展欧几里得
        if (a == 0 && b == 0)
            return -1;
        if (b == 0)
        {
            x = 1;
            y = 0;
            return a;
        }
        long long d = extend_gcd(b, a % b, y, x);
        y -= a / b * x;
        return d;
    }
    long long mod_rev(long long a, long long n) //乘法逆元lucas用
    {
        long long x, y;
        long long d = extend_gcd(a, n, x, y);
        if (d == 1)
            return (x % n + n) % n;
        else
            return -1;
    }
    
    void init() //线性筛求莫比乌斯函数
    {
        tot = 0;
        mu[1] = 1;
        for (int i = 2; i < maxn; i++)
        {
            if (!vis[i])
            {
                prime[tot++] = i;
                mu[i] = -1;
            }
            for (int j = 0; j < tot; j++)
            {
                if (i * prime[j] >= maxn)
                    break;
                vis[i * prime[j]] = 1;
                if (i % prime[j] == 0)
                {
                    mu[i * prime[j]] = 0;
                    break;
                }
                else
                {
                    mu[i * prime[j]] = -mu[i];
                }
            }
        }
        fac[0] = rev[0] = 1;
        for (int i = 1; i < maxn; i++)
        {
            fac[i] = fac[i - 1] * i % mod;
            //预处理卢卡斯定理参数
            rev[i] = mod_rev(fac[i], mod);
            //预处理逆元
        }
    }
    
    long long quick_mod(long long a, long long b)
    {
        long long ans = 1;
        a %= mod;
        while (b)
        {
            if (b & 1)
            {
                ans = ans * a % mod;
                b--;
            }
            b >>= 1;
            a = a * a % mod;
        }
        return ans;
    }
    
    long long Lucas(long long m, long long n)
    {
        if (n == 0)
            return 1;
        long long ans = fac[m] * rev[n] % mod * rev[m - n] % mod;
        return ans;
    }
    
    int main()
    {
        init();
        while (scanf("%d%d%d", &n, &m, &k) != EOF)
        {
            memset(cnt, 0, sizeof cnt);
            memset(f, 0, sizeof f);
            for (int i = 1; i <= n; i++)
            {
                scanf("%d", &a[i]);
                cnt[a[i]]++;
            }
            for (int i = 1; i <= m; i++)
                for (int j = i + i; j <= m; j += i)
                    cnt[i] += cnt[j];
    
            for (int i = 1; i <= m; i++)
            {
                long long p = cnt[i];
                if (k - n + p < 0)
                {
                    F[i] = 0;
                    continue;
                }
                F[i] = Lucas(p, k - n + p) * quick_mod(m / i - 1, k - n + p) % mod * quick_mod(m / i, n - p) % mod;
            }
    
            for (int i = 1; i <= m; i++)
            {
                if (F[i] == 0)
                    f[i] = 0;
    
                else
                    for (int j = i; j <= m; j += i)
                    {
                        f[i] += mu[j / i] * F[j];
                        f[i] %= mod;
                    }
                printf("%lld", (f[i] + mod) % mod);
                if (i != m)
                    printf(" ");
            }
            printf("
    ");
        }
        return 0;
    }
    
    
  • 相关阅读:
    【荐2】Total Commander 7.57 配置选项 个性化设置备份,,,开启时如何自动最大化???(二)
    【荐1】Total Commander 7.57 个人使用设置 及 常用快捷键 备忘
    Total Commander 集成、调用 Beyond Compare比较文件
    Linux/CentOS下开启MySQL远程连接,远程管理数据库
    如何查看、修改Linux的系统时间
    Linux cp (复制)命令简介
    Linux网络下载命令 wget 简介
    Linux如何下解压windows下的.zip和.rar文件
    Linux tar (打包.压缩.解压缩)命令说明 | tar如何解压文件到指定的目录?
    解决宿主机不能访问虚拟机CentOS中的站点 | 更新CentOS防火墙设置开启80端口访问
  • 原文地址:https://www.cnblogs.com/lunatic-talent/p/12798483.html
Copyright © 2020-2023  润新知