一般大佬会给你证明,而菜鸟会教你怎么使用。
先摆上公式:
欧拉降幂:
适用范围:
当底与取模的数互质,且b较大的时侯,我这句话用不到,直接扩展欧拉降幂就好了,时间复杂度差不了多少。
扩展欧拉定理:
总结:
用的时候我们只考虑扩展的就可以了,因为
代码:
这个代码的优点是,如果b太大,不能读入的话也是可以处理的。
如果代码需要多次计算的话,可以使用线性筛法,获得欧拉函数的值。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll a,m,b;
inline ll read(ll m){
register ll x=0,f=0;char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)){
x=x*10+ch-'0';
if(x>=m) f=1;
x%=m;ch=getchar();
}
return x+(f==1?m:0);
}
ll phi(ll n){
ll ans=n,m=sqrt(n);
for(ll i=2;i<=m;i++){
if(n%i==0){
ans=ans/i*(i-1);
while(n%i==0) n/=i;
}
}
if(n>1) ans=ans/n*(n-1);
return ans;
}
ll fast_pow(ll a,ll b,ll p){
ll ret=1;
for(;b;b>>=1,a=a*a%p)
if(b&1) ret=ret*a%p;
return ret;
}
int main()
{
scanf("%lld%lld",&a,&m);
b=read(phi(m));
printf("%lld
",fast_pow(a,b,m));
return 0;
}
题目:
洛谷模板题