• 凸包——Graham扫描法和Andrew算法


    凸包:能围住所有给出的点的面积最小的多边形(个人理解)

    Graham:选取y值最小的点,将其它点极角排序,依次把1~n号点加入栈中,判断当前点、栈顶、栈顶下面那个点三者的关系(嘻嘻),一直这样做就好了

    判断用叉积,也就是如下图的要判掉(top--)

    其实上图是不对的哦,你有没有反应过来呢~按极角排序后不会有这种情况哦,肯定是先连a[i],再连s[top]的

    具体实现看代码吧~

    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    #define sqr(x) (x)*(x)
    #define rep(i,x,y) for (int i=(x);i<=(y);i++)
    #define per(i,x,y) for (int i=(x);i>=(y);i--)
    typedef double DBD;
    using namespace std;
    const int N=100010;
    struct point{int x,y;}a[N],s[N],b[N];
    int n,top;
    int read() {int d=0,f=1; char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1; c=getchar();} while (c>='0'&&c<='9') d=(d<<3)+(d<<1)+c-48,c=getchar(); return d*f;}
    DBD dis(int x,int xx,int y,int yy){return sqrt(sqr(x-xx)+sqr(y-yy));}
    bool cross(point x,point y,point z){return (x.x-z.x)*(y.y-z.y)-(y.x-z.x)*(x.y-z.y)>=0;}
    bool cmp(point A,point B){return (A.x-a[1].x)*(B.y-a[1].y)-(B.x-a[1].x)*(A.y-a[1].y)>=0;}
    int main()
    {
        //judge();
        n=read();
        int p=0; a[0].y=1e9;
        rep(i,1,n)
        {
            a[i].x=read(); a[i].y=read();
            if (a[i].y<a[p].y||a[i].y==a[p].y&&a[i].x<a[p].x) p=i;
        }
        swap(a[1],a[p]);
        sort(a+2,a+1+n,cmp);
        s[1]=a[1]; s[2]=a[2]; top=2;
        rep(i,3,n)
        {
            while (top>=2&&cross(a[i],s[top],s[top-1])) top--;
            s[++top]=a[i];
        }
        DBD ans=0;
        for (int i=1;i<top;i++) ans+=dis(s[i].x,s[i+1].x,s[i].y,s[i+1].y);
        ans+=dis(s[1].x,s[top].x,s[1].y,s[top].y);
        printf("%.1lf",ans);
        return 0;
    }
    Graham

    Andrew:

    据说比Graham更快更稳定,但我不是很懂。。。

    具体过程(哪里具体了。。。):将所有点以x为第一关键字,y为第二关键字排序,分别求出上下凸壳,求的时候一样的判法,就好了

    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    #define sqr(x) (x)*(x)
    #define rep(i,x,y) for (int i=(x);i<=(y);i++)
    #define per(i,x,y) for (int i=(x);i>=(y);i--)
    typedef double DBD;
    using namespace std;
    const int N=100010;
    struct point{int x,y;}a[N],s[N];
    int n,top;
    int read() {int d=0,f=1; char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1; c=getchar();} while (c>='0'&&c<='9') d=(d<<3)+(d<<1)+c-48,c=getchar(); return d*f;}
    DBD dis(int x,int xx,int y,int yy){return sqrt(sqr(x-xx)+sqr(y-yy));}
    DBD cross(point x,point y,point z){return (x.x-z.x)*(y.y-z.y)-(y.x-z.x)*(x.y-z.y);}
    bool cmp(point a,point b){return a.x<b.x||a.x==b.x&&a.y<b.y;}
    int main()
    {
        n=read();
        rep(i,1,n) a[i].x=read(),a[i].y=read();
        sort(a+1,a+1+n,cmp);
        rep(i,1,n)
        {
            while (top>1&&cross(a[i],s[top],s[top-1])>=0) top--;
            s[++top]=a[i];
        }
        int k=top;
        per(i,n-1,1)
        {
            while (top>k&&cross(a[i],s[top],s[top-1])>=0) top--;
            s[++top]=a[i];
        }
        DBD ans=0;
        rep(i,1,top-1) ans+=dis(s[i].x,s[i+1].x,s[i].y,s[i+1].y);
        ans+=dis(s[1].x,s[top].x,s[1].y,s[top].y);
        printf("%.1lf",ans);
        return 0;
    }
    Andrew

    可能你会疑问:为什么第n个点一定在凸包上呢?当然了,因为它的x最大,即使有和它x一样的,它的y更大,yy一下就脑补出来了

  • 相关阅读:
    CentOS 6.9/7通过yum安装指定版本的MySQL
    CentOS的el5, el6, el7代表什么
    MySQL的mysql.sock文件作用(转)
    MySQL常用命令
    Linux下以特定用户运行命令
    简述TCP的三次握手过程
    Tomcat-connector的微调(1): acceptCount参数
    tomcat修改jsessionid在cookie中的名称
    使用@Async异步注解导致该Bean在循环依赖时启动报BeanCurrentlyInCreationException异常的根本原因分析,以及提供解决方案【享学Spring】
    [LeetCode] Construct the Rectangle 构建矩形
  • 原文地址:https://www.cnblogs.com/lujiaju6555/p/7086672.html
Copyright © 2020-2023  润新知