• Python之酒店评论分词、词性标注、TF-IDF、词频统计、词云


    1.jieba分词与词性标注

    思路:

    (1)利用pandas读取csv文件中的酒店客户评论,并创建3个新列用来存放分词结果、词性标注结果、分词+词性标注结果

    (2)利用jieba分词工具的posseg包,同时实现分词与词性标注

    (3)利用停用词表对分词结果进行过滤

    (4)将分词结果以20000条为单位写入txt文档中,便于后续的词频统计以词云的制作

    (5)将最终的分词结果与词性标注结果存储到csv文件中

    # coding:utf-8
    import pandas as pd
    import jieba.posseg as pseg
    import jieba
    import time
    from jieba.analyse import *
    df=pd.read_csv('csvfiles/hotelreviews_after_filter_utf.csv',header=None) #hotelreviews50_1.csv文件与.py文件在同一级目录下
    #在读数之后自定义标题
    columns_name=['mysql_id','hotelname','customername','reviewtime','checktime','reviews','scores','type','room','useful','likenumber']
    df.columns=columns_name
    df['review_split']='new' #创建分词结果列:review_split
    df['review_pos']='new' #创建词性标注列:review_pos
    df['review_split_pos']='new' #创建分词结果/词性标注列:review_split_pos
    
    #   调用jieba分词包进行分词
    def jieba_cut(review):
        review_dict = dict(pseg.cut(review))
        return review_dict
    
    # 创建停用词列表
    def stopwordslist(stopwords_path):
        stopwords = [line.strip() for line in open(stopwords_path,encoding='UTF-8').readlines()]
        return stopwords
    
    # 获取分词结果、词性标注结果、分词结果/分词标注结果的字符串
    def get_fenciresult_cixin(review_dict_afterfilter):
        keys = list(review_dict_afterfilter.keys()) #获取字典中的key
        values = list(review_dict_afterfilter.values())
        review_split="/".join(keys)
        review_pos="/".join(values)
        review_split_pos_list = []
        for j in range(0,len(keys)):
            review_split_pos_list.append(keys[j]+"/"+values[j])
        review_split_pos=",".join(review_split_pos_list)
        return review_split,review_pos,review_split_pos
    
    
    stopwordslist=stopwordslist("stopwords_txt/total_stopwords_after_filter.txt")
    
    # review="刚刚才离开酒店,这是一次非常愉快满意住宿体验。酒店地理位置对游客来说相当好,离西湖不行不到十分钟,离地铁口就几百米,周围是繁华商业中心,吃饭非常方便。酒店外观虽然有些年头,但里面装修一点不过时,我是一个对卫生要求高的,对比很满意,屋里有消毒柜可以消毒杯子,每天都有送两个苹果。三楼还有自助洗衣,住客是免费的,一切都干干净净,服务也很贴心,在这寒冷的冬天,住这里很温暖很温馨"
    #分词与词性标注
    def fenci_and_pos(review):
        #01 调用jieba的pseg同时进行分词与词性标注,返回一个字典 d = {key1 : value1, key2 : value2 }
        review_dict= jieba_cut(review)
        # print(review_dict)
        # 02 停用词过滤
        review_dict_afterfilter = {}
        for key, value in review_dict.items():
            if key not in stopwordslist:
                review_dict_afterfilter[key] = value
            else:
                pass
        # print(review_dict_afterfilter)
        #03 获取分词结果、词性标注结果、分词+词性结果
        review_split, review_pos,review_split_pos = get_fenciresult_cixin(review_dict_afterfilter)
        return review_split,review_pos,review_split_pos
    
    def fenci_pos_time(start_time, end_time):
        elapsed_time = end_time - start_time
        elapsed_mins = int(elapsed_time / 60)
        elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
        return elapsed_mins, elapsed_secs
    
    # fenci_and_pos(review)
    # jieba.load_userdict('stopwords_txt/user_dict.txt') #使用用户自定义的词典
    
    start_time = time.time()
    review_count=0
    txt_id = 1
    for index,row in df.iterrows():
        reviews=row['reviews']
        review_split, review_pos, review_split_pos=fenci_and_pos(reviews)
        # print(review_split)
        # print(review_pos)
        # print(review_split_pos)
        review_mysql_id=row['mysql_id']
        print(review_mysql_id)  #输出当前分词的评论ID
    
        df.loc[index,'review_split']=review_split
        df.loc[index,'review_pos']=review_pos
        df.loc[index,'review_split_pos']=review_split_pos
        #review_split 将分词结果逐行写入txt文档中
        if review_count<20000:
            review_count+=1  #计数+1
            review_split_txt_path = 'split_result_txt/split_txt_' + str(txt_id) + '.txt'
            f = open(review_split_txt_path, 'a', encoding='utf-8')
            f.write('
    ' + review_split)
            f.close()
        else:
            txt_id+=1
            review_count=0
            review_split_txt_path = 'split_result_txt/split_txt_' + str(txt_id) + '.txt'
            f = open(review_split_txt_path, 'a', encoding='utf-8')
            f.write('
    ' + review_split)
            f.close()
    
    df.to_csv('csvfiles/hotelreviews_fenci_pos.csv', header=None, index=False)  # header=None指不把列号写入csv当中
    # 计算分词与词性标注所用时间
    end_time = time.time()
    fenci_mins, fenci_secs = fenci_pos_time(start_time, end_time)
    print(f'Fenci Time: {fenci_mins}m {fenci_secs}s')
    print("hotelreviews_fenci_pos.csv文件分词与词性标注已完成")

    2.词频统计

    #词频统计函数
    def wordfreqcount(review_split_txt_path):
        wordfreq = {}  # 词频字典
        f = open(review_split_txt_path, 'r', encoding='utf-8') #打开分词结果的txt文件
        review_split = ""
        #逐行读取文件,将读取的字符串用/切分,遍历切分结果,统计词频
        for line in f.readlines():
            review_words = line.split("/")
            keys = list(wordfreq.keys())
            for word in review_words:
                if word in keys:
                    wordfreq[word] = wordfreq[word] + 1
                else:
                    wordfreq[word] = 1
    
        word_freq_list = list(wordfreq.items())
        word_freq_list.sort(key=lambda x: x[1], reverse=True)
        return word_freq_list
    
    #设置分词结果保存的txt路径
    txt_id = 1
    review_split_txt_path = 'split_result_txt/split_txt_' + str(txt_id) + '.txt'
    word_freq_list=wordfreqcount(review_split_txt_path)
    #输出词频前10的词汇及其出现频次
    for i in range(10):
        print(word_freq_list[i])

    3.词云制作

    首先利用conda安装wordcloud

    conda install -c conda-forge wordcloud

    最简单的入门案例:

    import wordcloud
    
    # 构建词云对象w,设置词云图片宽、高、字体、背景颜色等参数
    w = wordcloud.WordCloud(width=1000,height=700,background_color='white',font_path='msyh.ttc')
    
    # 调用词云对象的generate方法,将文本传入
    w.generate('从明天起,做一个幸福的人。喂马、劈柴,周游世界。从明天起,关心粮食和蔬菜。我有一所房子,面朝大海,春暖花开')
    
    # 将生成的词云保存为output2-poem.png图片文件,保存到当前文件夹中
    w.to_file('output2-poem.png')

    效果图:

    我的词云案例:

    import jieba
    import wordcloud
    
    # 导入imageio库中的imread函数,并用这个函数读取本地图片,作为词云形状图片
    import imageio
    mk = imageio.imread("pic/qiqiu2.png")
    # 构建并配置词云对象w
    w = wordcloud.WordCloud(
                            max_words=200,  # 词云显示的最大词数
                            background_color='white',
                            mask=mk,
                            font_path='msyh.ttc', #字体路径,文件中没有(应该是无效设置)
                            )
    
    #设置分词结果保存的txt路径
    txt_id = 1
    review_split_txt_path = 'split_result_txt/split_txt_' + str(txt_id) + '.txt'
    f = open(review_split_txt_path, 'r', encoding='utf-8')
    string=""
    for line in f.readlines():
        string+=line
    print(string)
    
    # 将string变量传入w的generate()方法,给词云输入文字
    w.generate(string)
    # 将词云图片导出到当前文件夹
    w.to_file('output5-tongji.png')

    效果图:

    参考文献:https://www.cnblogs.com/wkfvawl/p/11585986.html

    4.TF-IDF 关键词提取

    import jieba
    txt_id=1
    review_split_txt_path='split_result_txt/split_txt_'+str(txt_id)+'.txt'
    f = open(review_split_txt_path, 'r',encoding='utf-8')
    review_split=""
    for line in f.readlines():
        review_split+=line
    print("review_split:"+review_split)
    
    # test_reviews="刚刚才离开酒店,这是一次非常愉快满意住宿体验。"
    # review_split, review_pos, review_split_pos=fenci_and_pos(test_reviews)
    # print(review_split)
    keywords = jieba.analyse.extract_tags(review_split,topK = 10, withWeight = True)
    print('【TF-IDF提取的关键词列表:】')
    print(keywords)   #采用默认idf文件提取的关键词

     参考文献:https://blog.csdn.net/asialee_bird/article/details/81486700    TF-IDF算法介绍及实现

  • 相关阅读:
    1、嵌入式Linux开发环境搭建
    JAVA_SE基础——1.JDK&JRE下载及安装
    数组
    Java方法的概述
    Java流程控制
    初识Java
    windows常用的快捷键和dos命令
    window10 Java JDK环境变量配置
    jQuery学习 (实现简单选项卡效果练习test)
    jQuery学习 (实现内联下拉菜单效果(一个小test)
  • 原文地址:https://www.cnblogs.com/luckyplj/p/13199336.html
Copyright © 2020-2023  润新知