• 多线程 Thread


    多线程:指的是这个程序(一个进程)运行时产生了不止一个线程

    并行与并发

    并行:多个cpu实例或者多台机器同时执行一段处理逻辑,是真正的同时。

    并发:通过cpu调度算法,让用户看上去同时执行,实际上从cpu操作层面不是真正的同时。并发往往在场景中有公用的资源,那么针对这个公用的资源往往产生瓶颈,我们会用TPS或者QPS来反应这个系统的处理能力。

    线程安全:经常用来描绘一段代码。指在并发的情况之下,该代码经过多个线程使用,线程的调度顺序不影响任何结果。这个时候使用多线程,我们只需要关注系统的内存,cpu是不是够用即可。反过来,线程不安全就意味着线程的调度顺序会影响最终结果,例如不加事务的转账代码:

    void transferMoney(User from, User to, float amount){
           to.setMoney(to.getBalance() + amount);
           from.setMoney(from.getBalance() - amount);
    } 

    同步:Java中的同步指的是通过人为的控制和调度,保证共享资源的多线程访问成为线程安全,来保证结果的准确。如上面的代码简单加入@synchronized关键字。在保证结果准确的同时,提高性能,才是优秀的程序。线程安全的优先级高于性能。

    线程的状态

     

     

    线程在Running的过程中可能会遇到阻塞(Blocked)情况

    调用join()和sleep()方法,sleep()时间结束或被打断,join()中断,IO完成都会回到Runnable状态,等待JVM的调度。

    调用wait(),使该线程处于等待池(wait blocked pool),直到notify()/notifyAll(),线程被唤醒被放到锁定池(lock blocked pool ),释放同步锁使线程回到可运行状态(Runnable)

    对Running状态的线程加同步锁(Synchronized)使其进入(lock blocked pool ),同步锁被释放进入可运行状态(Runnable)。

    此外,在runnable状态的线程是处于被调度的线程,此时的调度顺序是不一定的。Thread类中的yield方法可以让一个running状态的线程转入runnable。

     

    每个对象都有的方法(机制)

     

    synchronized, wait, notify 是任何对象都具有的同步工具。让我们先来了解他们

     


     

     


    它们是应用于同步问题的人工线程调度工具。讲其本质,首先就要明确monitor的概念,Java中的每个对象都有一个监视器,来监测并发代码的重入。在非多线程编码时该监视器不发挥作用,反之如果在synchronized 范围内,监视器发挥作用。

    wait/notify必须存在于synchronized块中。并且,这三个关键字针对的是同一个监视器(某对象的监视器)。这意味着wait之后,其他线程可以进入同步块执行。

    当某代码并不持有监视器的使用权时去wait()或notify(),会抛出java.lang.IllegalMonitorStateException。也包括在synchronized块中去调用另一个对象的wait/notify,因为不同对象的监视器不同,同样会抛出此异常。

     

    用法

    synchronized的使用

    代码块:在多线程环境下,synchronized块中的方法获取了lock实例的monitor,如果实例相同,那么只有一个线程能执行该块内容

    public class Thread1 implements Runnable {
       Object lock;
       public void run() {  
           synchronized(lock){
             ..do something
           }
       }
    }

    直接用于方法: 相当于上面代码中用lock来锁定的效果,实际获取的是Thread1类的monitor。更进一步,如果修饰的是static方法,则锁定该类所有实例。

    public class Thread1 implements Runnable {
       public synchronized void run() {  
            ..do something
       }
    }

    synchronized, wait, notify结合:典型场景生产者消费者问题

    /**
       * 生产者生产出来的产品交给店员
       */
      public synchronized void produce()
      {
          if(this.product >= MAX_PRODUCT)
          {
              try
              {
                  wait();  
                  System.out.println("产品已满,请稍候再生产");
              }
              catch(InterruptedException e)
              {
                  e.printStackTrace();
              }
              return;
          }
    
          this.product++;
          System.out.println("生产者生产第" + this.product + "个产品.");
          notifyAll();   //通知等待区的消费者可以取出产品了
      }
    
      /**
       * 消费者从店员取产品
       */
      public synchronized void consume()
      {
          if(this.product <= MIN_PRODUCT)
          {
              try 
              {
                  wait(); 
                  System.out.println("缺货,稍候再取");
              } 
              catch (InterruptedException e) 
              {
                  e.printStackTrace();
              }
              return;
          }
    
          System.out.println("消费者取走了第" + this.product + "个产品.");
          this.product--;
          notifyAll();   //通知等待去的生产者可以生产产品了
      }

    volatile

    volatile关键词的作用:每次针对该变量的操作都激发一次load and save

    多线程的内存模型:main memory(主存)、working memory(线程栈),在处理数据时,线程会把值从主存load到本地栈,完成操作后再save回去。

    针对多线程使用的变量如果不是volatile或者final修饰的,很有可能产生不可预知的结果(另一个线程修改了这个值,但是之后在某线程看到的是修改之前的值)。其实道理上讲同一实例的同一属性本身只有一个副本。但是多线程是会缓存值的,本质上,volatile就是不去缓存,直接取值。在线程安全的情况下加volatile会牺牲性能。

    synchronized和volatile区别

    volatile关键字是线程同步的轻量级实现,所以volatile性能肯定比synchronized关键字要好。但是volatile关键字只能用于变量而synchronized关键字可以修饰方法以及代码块。

    synchronized关键字在JavaSE1.6之后进行了主要包括为了减少获得锁和释放锁带来的性能消耗而引入的偏向锁和轻量级锁以及其它各种优化之后执行效率有了显著提升,实际开发中使用 synchronized 关键字的场景还是更多一些。

    多线程访问volatile关键字不会发生阻塞,而synchronized关键字可能会发生阻塞

    volatile关键字能保证数据的可见性,但不能保证数据的原子性。synchronized关键字两者都能保证。

    volatile关键字主要用于解决变量在多个线程之间的可见性,而 synchronized关键字解决的是多个线程之间访问资源的同步性。

     

    基本线程类

    基本线程类指的是Thread类,Runnable接口,Callable接口
    Thread 类实现了Runnable接口,启动一个线程的方法:

     MyThread my = new MyThread();
      my.start();

    Thread类相关方法:

    复制代码
    //当前线程可转让cpu控制权,让别的就绪状态线程运行(切换)
    public static Thread.yield() 
    //暂停一段时间
    public static Thread.sleep()  
    //在一个线程中调用other.join(),将等待other执行完后才继续本线程。    
    public join()
    //后两个函数皆可以被打断
    public interrupte()
    复制代码

    关于中断:它并不像stop方法那样会中断一个正在运行的线程。线程会不时地检测中断标识位,以判断线程是否应该被中断(中断标识值是否为true)。中断只会影响到wait状态、sleep状态和join状态。被打断的线程会抛出InterruptedException。


    Thread.interrupted()检查当前线程是否发生中断,返回boolean
    synchronized在获锁的过程中是不能被中断的。

    中断是一个状态,interrupt()方法只是将这个状态置为true而已。所以说正常运行的程序不去检测状态,就不会终止,而wait等阻塞方法会去检查并抛出异常。如果在正常运行的程序中添加while(!Thread.interrupted()) ,则同样可以在中断后离开代码体

    Thread类应用
    写的时候最好要设置线程名称 Thread.name,并设置线程组 ThreadGroup,目的是方便管理。在出现问题的时候,打印线程栈 (jstack -pid) 一眼就可以看出是哪个线程出的问题,这个线程是干什么的。

    如何获取线程中的异常


    不能用try,catch来获取线程中的异常

    Runnable

    与Thread类似

    Callable

    future模式:并发模式的一种,可以有两种形式,即无阻塞和阻塞,分别是isDone和get。其中Future对象用来存放该线程的返回值以及状态

    ExecutorService e = Executors.newFixedThreadPool(3);
     //submit方法有多重参数版本,及支持callable也能够支持runnable接口类型.
    Future future = e.submit(new myCallable());
    future.isDone() //return true,false 无阻塞
    future.get() // return 返回值,阻塞直到该线程运行结束

     

    基本线程方法

    sleep()方法
    在指定时间内让当前正在执行的线程暂停执行,但不会释放“锁标志”。不推荐使用。
    sleep()使当前线程进入阻塞状态,在指定时间内不会执行。


    wait()方法
    在其他线程调用对象的notify或notifyAll方法前,导致当前线程等待。线程会释放掉它所占有的“锁标志”,从而使别的线程有机会抢占该锁。
    当前线程必须拥有当前对象锁。如果当前线程不是此锁的拥有者,会抛出IllegalMonitorStateException异常。
    唤醒当前对象锁的等待线程使用notify或notifyAll方法,也必须拥有相同的对象锁,否则也会抛出IllegalMonitorStateException异常。
    waite()和notify()必须在synchronized函数或synchronized block中进行调用。如果在non-synchronized函数或non-synchronized block中进行调用,虽然能编译通过,但在运行时会发生IllegalMonitorStateException的异常。


    yield()方法
    暂停当前正在执行的线程对象,不会释放琐。
    yield()只是使当前线程重新回到可执行状态,所以执行yield()的线程有可能在进入到可执行状态后马上又被执行。
    yield()只能使同优先级或更高优先级的线程有执行的机会。


    join()方法
    join()等待该线程终止。join底层采用的是wait,所以也会释放琐
    等待调用join方法的线程结束,再继续执行。如:t.join();//主要用于等待t线程运行结束,若无此句,main则会执行完毕,导致结果不可预测

  • 相关阅读:
    16. 3Sum Closest
    17. Letter Combinations of a Phone Number
    20. Valid Parentheses
    77. Combinations
    80. Remove Duplicates from Sorted Array II
    82. Remove Duplicates from Sorted List II
    88. Merge Sorted Array
    257. Binary Tree Paths
    225. Implement Stack using Queues
    113. Path Sum II
  • 原文地址:https://www.cnblogs.com/lucky1024/p/11040444.html
Copyright © 2020-2023  润新知