卷积神经网络——卷积和池化
Convolution Layer
- 可以保全输入的空间结构
- 卷积神经网络越深所学习到的特征越高阶
- 卷积层输出大小公式:
s i z e = ( N + 2 P − F ) / s t r i d e + 1 size = (N + 2P - F) / stride + 1 size=(N+2P−F)/stride+1 - 1 × 1 1 imes 1 1×1 convolution layers make perfect sense
视觉之外的卷积神经网络
- 5 × 5 5 imes 5 5×5 filters -> 5 × 5 5 imes 5 5×5 receptive field for each neuron
Pooling layer
- make the representations smaller and more manageable
- operates over each activation map independently
- Note that it is not common to use zero-padding for Pooling layers