tf.nn.dropout:函数
官网说明:
tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) Defined in tensorflow/python/ops/nn_ops.py. See the guides: Layers (contrib) > Higher level ops for building neural network layers, Neural Network > Activation Functions Computes dropout. With probability keep_prob, outputs the input element scaled up by 1 / keep_prob, otherwise outputs 0. The scaling is so that the expected sum is unchanged. By default, each element is kept or dropped independently. If noise_shape is specified,
it must be broadcastable to the shape of x, and only dimensions with noise_shape[i] == shape(x)[i] will make independent decisions. For example,
if shape(x) = [k, l, m, n] and noise_shape = [k, 1, 1, n], each batch and channel component will be kept independently and each row and column will be kept or not kept together. Args: x: A floating point tensor. keep_prob: A scalar Tensor with the same type as x. The probability that each element is kept. noise_shape: A 1-D Tensor of type int32, representing the shape for randomly generated keep/drop flags. seed: A Python integer. Used to create random seeds. See tf.set_random_seed for behavior. name: A name for this operation (optional). Returns: A Tensor of the same shape of x. Raises: ValueError: If keep_prob is not in (0, 1] or if x is not a floating point tensor.
使用说明:
参数 keep_prob: 表示的是保留的比例,假设为0.8 则 20% 的数据变为0,然后其他的数据乘以 1/keep_prob;keep_prob 越大,保留的越多;
参数 noise_shape:干扰形状。 此字段默认是None,表示第一个元素的操作都是独立,但是也不一定。比例:数据的形状是shape(x)=[k, l, m, n],而noise_shape=[k, 1, 1, n],则第1和4列是独立保留或删除,第2和3列是要么全部保留,要么全部删除。
代码举例:
import os import numpy as np import tensorflow as tf x = tf.Variable(tf.ones([10, 10])) inputs = tf.nn.dropout(x, 0.8) init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) print (x.eval()) print (inputs.eval())
输出结果:
[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]] [[1.25 1.25 0. 1.25 1.25 1.25 1.25 1.25 1.25 0. ] [0. 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25] [1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25] [1.25 1.25 1.25 1.25 1.25 0. 1.25 1.25 1.25 1.25] [1.25 1.25 1.25 1.25 1.25 0. 1.25 1.25 0. 1.25] [1.25 1.25 1.25 1.25 1.25 0. 0. 1.25 1.25 1.25] [0. 1.25 1.25 0. 1.25 1.25 1.25 0. 1.25 0. ] [1.25 0. 0. 1.25 1.25 1.25 1.25 1.25 1.25 1.25] [1.25 1.25 1.25 0. 1.25 1.25 1.25 0. 0. 0. ] [1.25 1.25 0. 0. 0. 0. 1.25 1.25 1.25 1.25]]
加入 noise:
import os import numpy as np import tensorflow as tf x = tf.Variable(tf.ones([3,3,3])) inputs = tf.nn.dropout(x, 0.5,[3,1,3]) init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) print (x.eval()) print (inputs.eval())
输出:
[[[1. 1. 1.] [1. 1. 1.] [1. 1. 1.]] [[1. 1. 1.] [1. 1. 1.] [1. 1. 1.]] [[1. 1. 1.] [1. 1. 1.] [1. 1. 1.]]] [[[0. 2. 2.] [0. 2. 2.] [0. 2. 2.]] [[2. 2. 2.] [2. 2. 2.] [2. 2. 2.]] [[0. 2. 2.] [0. 2. 2.] [0. 2. 2.]]]