Space Elevator
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 8569 | Accepted: 4052 |
Description
The cows are going to space! They plan to achieve orbit by building a sort of space elevator: a giant tower of blocks. They have K (1 <= K <= 400) different types of blocks with which to build the tower. Each block of type i has height h_i (1 <= h_i <= 100) and is available in quantity c_i (1 <= c_i <= 10). Due to possible damage caused by cosmic rays, no part of a block of type i can exceed a maximum altitude a_i (1 <= a_i <= 40000).
Help the cows build the tallest space elevator possible by stacking blocks on top of each other according to the rules.
Help the cows build the tallest space elevator possible by stacking blocks on top of each other according to the rules.
Input
* Line 1: A single integer, K
* Lines 2..K+1: Each line contains three space-separated integers: h_i, a_i, and c_i. Line i+1 describes block type i.
* Lines 2..K+1: Each line contains three space-separated integers: h_i, a_i, and c_i. Line i+1 describes block type i.
Output
* Line 1: A single integer H, the maximum height of a tower that can be built
Sample Input
3 7 40 3 5 23 8 2 52 6
Sample Output
48
Hint
OUTPUT DETAILS:
From the bottom: 3 blocks of type 2, below 3 of type 1, below 6 of type 3. Stacking 4 blocks of type 2 and 3 of type 1 is not legal, since the top of the last type 1 block would exceed height 40.
From the bottom: 3 blocks of type 2, below 3 of type 1, below 6 of type 3. Stacking 4 blocks of type 2 and 3 of type 1 is not legal, since the top of the last type 1 block would exceed height 40.
题目大意:一群牛要上太空,给出n种石块,每种石块给出单块高度,每种石块都有个限定高度,超过这个高度这种石块就不能被使用了,最后面是每种石块的数量,要求用这些石块能组成的最大高度,并且不能超过限定的高度;
思路:在进行多重背包之前要进行一次排序,将最大高度小的放在前面,只有这样才能得到最优解,如果将大的放在前面,后面有的小的就不能取到,排序之后就可以进行完全背包了
AC代码(一): PZ
1 #include<stdio.h> 2 #include<iostream> 3 #include<algorithm> 4 #include<string.h> 5 using namespace std; 6 #define max 40005 7 int a[max],b[max],c[max]; 8 struct pp 9 { 10 int x,y,z; 11 }p[405]; 12 int cmp(pp p1,pp p2)//按照限定高度进行排序 13 { 14 return p1.y<p2.y; 15 } 16 int main() 17 { 18 int n; 19 while((scanf("%d",&n))!=EOF) 20 { 21 int i,j,k,t; 22 memset(a,0,sizeof(a)); 23 for(i=0;i<n;i++) 24 scanf("%d %d %d",&p[i].x,&p[i].y,&p[i].z); 25 sort(p,p+n,cmp); 26 j=0; 27 //暴力枚举所有的高度,a[s]=1; 表示s这个高度能够达到; 28 for(i=0;i<n;i++) 29 { 30 int s=0,t=1,dd=0; 31 while(s<=p[i].y&&t<=p[i].z) //小于限定的高度,并且小于限定的个数 32 { 33 s=s+p[i].x; 34 for(k=0;k<j;k++) 35 if(!a[b[k]+s] && (b[k]+s<=p[i].y)) //如果b[k]+s 这个高度没有出现过,并且小于限定的高低,高度可行 36 { 37 a[b[k]+s]=1; 38 c[dd++]=b[k]+s; 39 } 40 if(!a[s] && s<=p[i].y) 41 { 42 a[s]=1; 43 b[j++]=s; 44 } 45 t++; //统计当前石块使用个数 46 } 47 for(k=0;k<dd;k++) 48 b[j++]=c[k]; 49 } 50 int ok=1; 51 for(i=40000;i>=0;i--) 52 if(a[i]) 53 { 54 printf("%d ",i); 55 ok=0; 56 break; 57 } 58 if(ok) 59 printf("0 "); 60 } 61 return 0; 62 }
AC代码(二):
1 #include<iostream> 2 #include<algorithm> 3 #include<cstdio> 4 #include<cstring> 5 using namespace std; 6 const int N = 400010; 7 struct TT 8 { 9 int x,h,n; 10 }a[410]; 11 int dp[N],cot[N]; 12 int cmp(TT x,TT y)//按照最高能堆多高进行排序; 13 { 14 if( x.h<y.h) return 1; 15 return 0; 16 } 17 int main() 18 { 19 int T,ans; 20 while(cin>>T) 21 { 22 for(int i=0; i<T; i++) 23 scanf("%d %d %d",&a[i].x,&a[i].h,&a[i].n); 24 memset(dp,0,sizeof(0)); 25 sort(a,a+T,cmp); 26 dp[0] = 1; 27 ans = 0; 28 //采用暴力的方法,一直枚举j,看j最大能达到多少,则j就是要找的最大值; 29 for(int i=0; i<T; i++) 30 { 31 memset(cot,0,sizeof(cot)); 32 for(int j = a[i].x; j<=a[i].h; j++) 33 { 34 // 如果j还没有达到并且dp[j-a[i].x] 大于0,并且当前模板的使用数不大于它的总数 35 if(!dp[j] && dp[j-a[i].x] && cot[j-a[i].x] < a[i].n) 36 { 37 dp[j] = 1; 38 cot[j]=cot[j-a[i].x]+1; 39 if(j>ans) ans = j; 40 } 41 } 42 } 43 printf("%d ",ans); 44 } 45 return 0; 46 }