威威猫系列故事——拼车记
Time Limit: 500/200 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1098 Accepted Submission(s): 341
Problem Description
话说威威猫有一次去参加比赛,虽然学校离比赛地点不太远,但威威猫还是想坐出租车去。大学城的出租车总是比较另类,有“拼车”一说,也就是说,你一个人
坐车去,还是一堆人一起,总共需要支付的钱是一样的(每辆出租上除司机外最多坐下4个人)。刚好那天同校的一群Acmer在校门口扎堆了,大家果断决定拼
车去赛场。
问题来了,一辆又一辆的出租车经过,但里面要么坐满了乘客,要么只剩下一两个座位,众Acmer都觉得坐上去太亏了,威威猫也是这么想的。
假设N名Acmer准备拼车,此时为0时刻,从校门到目的地需要支付给出租车师傅D元(按车次算,不管里面坐了多少Acmer),假如S分钟后恰能赶上 比赛,那么S分钟后经过校门口的出租车自然可以忽略不计了。现在给出在这S分钟当中经过校门的所有的K辆出租车先后到达校门口的时间Ti 及里面剩余的座位Zi (1 <= Zi <= 4),Acmer可以选择上车几个人(不能超过),当然,也可以选择上0个人,那就是不坐这辆车。
俗话说,时间就是金钱,这里威威猫把每个Acmer在校门等待出租车的分钟数等同于花了相同多的钱(例如威威猫等待了20分钟,那相当于他额外花了20元钱)。
在保证所有Acmer都能在比赛开始前到达比赛地点的情况下,聪明的你能计算出他们最少需要花多少元钱么?
问题来了,一辆又一辆的出租车经过,但里面要么坐满了乘客,要么只剩下一两个座位,众Acmer都觉得坐上去太亏了,威威猫也是这么想的。
假设N名Acmer准备拼车,此时为0时刻,从校门到目的地需要支付给出租车师傅D元(按车次算,不管里面坐了多少Acmer),假如S分钟后恰能赶上 比赛,那么S分钟后经过校门口的出租车自然可以忽略不计了。现在给出在这S分钟当中经过校门的所有的K辆出租车先后到达校门口的时间Ti 及里面剩余的座位Zi (1 <= Zi <= 4),Acmer可以选择上车几个人(不能超过),当然,也可以选择上0个人,那就是不坐这辆车。
俗话说,时间就是金钱,这里威威猫把每个Acmer在校门等待出租车的分钟数等同于花了相同多的钱(例如威威猫等待了20分钟,那相当于他额外花了20元钱)。
在保证所有Acmer都能在比赛开始前到达比赛地点的情况下,聪明的你能计算出他们最少需要花多少元钱么?
Input
输入第一行为T,表示有T组测试数据。每组数据以四个整数N , K , D , S开始,具体含义参见题目描述,接着K行,表示第i辆出租车在第Ti分钟到达校门,其空余的座位数为Zi(时间按照先后顺序)。
[Technical Specification]
T <= 50
N <= 100
K <= 100
D <= 100
S <= 100
1 <= Zi <= 4
1<= T(i) <= T(i+1) <= S
[Technical Specification]
T <= 50
N <= 100
K <= 100
D <= 100
S <= 100
1 <= Zi <= 4
1<= T(i) <= T(i+1) <= S
Output
对于每组测试数据,输出占一行,如果他们所有人能在比赛前到达比赛地点,则输出一个整数,代表他们最少需要花的钱(单位:元),否则请输出“impossible”。
Sample Input
1
2 2 10 5
1 1
2 2
AC代码:其实就是一个多重背包的问题,完全可以按照 01 背包来写 ;
讲解:看似麻烦,其实就是一个简单的坐车问题,过来一个车,可以选择做,或者不做,做的话,可以选择做几个人,把完全背包也当成01背包来写;
AC代码:
1 #include<iostream> 2 #include<algorithm> 3 #include<cstring> 4 using namespace std; 5 #define maxx 10000000 6 int a[110],b[110]; 7 int dp[110]; 8 int main() 9 { 10 int N,K,D,S,t; 11 cin>>t; 12 while(t--) 13 { 14 fill(dp,dp+110,maxx); 15 cin>>N>>K>>D>>S; 16 int k=0,m,n; 17 dp[0]=0; 18 for(int i=1; i<=K; i++) 19 { 20 cin>>a[i]>>b[i]; 21 } 22 for(int i=1; i<=K;i++) 23 for(int j=N; j>=0; j--)//dp,做还是不做这辆车 24 for(int r=b[i] ; r>=0; r--)//dp,做几个人; 25 dp[j]=min(dp[j], dp[j-r]+D+ a[i]*r); 26 if(dp[N]==maxx) 27 cout<<"impossible"<<endl; 28 else cout<<dp[N]<<endl; 29 } 30 return 0; 31 }