• P2401 不等数列


    题目描述

    将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”。问在所有排列中,有多少个排列恰好有k个“<”。答案对2015取模。

    注:1~n的排列指的是1~n这n个数各出现且仅出现一次的数列。

    输入输出格式

    输入格式:

    第一行2个整数n,k。

    输出格式:

    一个整数表示答案。

    输入输出样例

    输入样例#1: 复制
    5 2
    输出样例#1: 复制
    66

    说明

    对于30%的数据:n <= 10

    对于100%的数据:k < n <= 1000

    //dp[i][j]表示前i个数插入了j个<号的方案数。
    //不考虑怎么插入'>'、'<'号,因为符号是根据数字序列确定的, 
    //所以我们按顺序插入a->f,符号也就跟着确定了 
    //考虑一下这样一个序列:
    //            a<b<d>c<e
    //    如果在a<b之间插入f,则变成了a<b>f,<号个数不变
    //    如果在a之前插入f,则f>a,<号个数也不变
    //    即在<号和序列前插入,<号的个数不会改变    
    //所以dp[i][j]可以增加dp[i-1][j]*(  j     +    1 )%mod种
    //                              <号个数     序列前端 
    //    如果在d>c之间插入f,则变成了d<f>c,增加了一个<号
    //     如果在e后面插入f,则e<f,增加了一个<号
    //    即在>号和序列末插入,<号的个数会增加1 
    //所以dp[i][j]可以增加dp[i-1][j-1]*( (i-1)   - (j-1)       -1            +   1       -> i-j  )%mod个
    //                                数字个数   <号个数  符号个数为数字个数-1    序列末尾   大于号个数+序列末尾 
    //即dp[i][j]=(dp[i-1][j-1]*(i-j)%mod+dp[i-1][j]*(j+1)%mod)%mod;

    #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; const int N=1e3+5; const int mod=2015; int n,k; int dp[N][N]; int main() { scanf("%d%d",&n,&k); dp[1][0]=1; for(int i=2;i<=n;++i) { dp[i][0]=1; //前i个数0个<号的情况只有1种,即单调上升。 for(int j=1;j<=k;++j) { dp[i][j]=(dp[i-1][j-1]*(i-j)%mod+dp[i-1][j]*(j+1)%mod)%mod; } } printf("%d",dp[n][k]); return 0; }
  • 相关阅读:
    旋转变换(一)旋转矩阵
    DICOM中几个判断图像方向的tag
    RGB与HSB之间的转换公式
    Delphi图像处理 -- RGB与HSL转换
    指针类型(C# 编程指南)
    关于 Delphi 中流的使用(2) 用 TFileStream(文件流) 读写
    [转载]Delphi Tokyo 10.2.3发布了
    如果设置网络优先级
    .gitignore详解
    Win10 兼容性 Visual studio web应用程序 ASP.NET 4.0 尚未在 Web 服务器上注册
  • 原文地址:https://www.cnblogs.com/lovewhy/p/8477611.html
Copyright © 2020-2023  润新知