• tensorflow dropout函数应用


    1、dropout

    dropout 是指在深度学习网络的训练过程中,按照一定的概率将一部分神经网络单元暂时从网络中丢弃,相当于从原始的网络中找到一个更瘦的网络,这篇博客中讲的非常详细

     
    2、tensorflow实现
     
    用dropout:
    import tensorflow as tf
    import numpy as np
    
    x_data=np.linspace(-1.,1.,300)[:, np.newaxis]
    noise=np.random.normal(0,0.05,x_data.shape)
    y_data=np.square(x_data)+noise
    
    def add_layer(input,in_size,out_size,activation_function=None,dropout_function=False):
        Weights=tf.Variable(tf.random_normal([in_size,out_size]))
        biases=tf.Variable(tf.zeros([1,out_size])+0.1)
        Wx_plus_b=tf.matmul(input,Weights)+biases
    
        if dropout_function==True:
            Wx_plus_b=tf.nn.dropout(Wx_plus_b,keep_prob=0.5)
        else:
            pass
    
        if activation_function is None:
            outputs=Wx_plus_b
        else:
            outputs=activation_function(Wx_plus_b)
        return outputs
    
    xs = tf.placeholder(tf.float32, [None, 1])
    ys = tf.placeholder(tf.float32, [None, 1])
    
    layer1=add_layer(xs,1,10,activation_function=tf.nn.relu,dropout_function=True)
    predict=add_layer(layer1,10,1)
    
    loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-predict),reduction_indices=[1]))
    train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    init=tf.global_variables_initializer()
    sess=tf.Session()
    sess.run(init)
    
    for i in range(100):
        sess.run(train_step,feed_dict={xs: x_data,ys: y_data})
        if i%5==0:
            print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))

    输出结果:

    1.87953
    0.294975
    0.173229
    0.122831
    0.0859246
    0.0712419
    0.0839021
    0.0572673
    0.0676766
    0.0584741
    0.0556422
    0.0576011
    0.0534098
    0.0472549
    0.0528496
    0.0427771
    0.0485248
    0.0502765
    0.0454531
    0.0516633

    不用dropout:

    import tensorflow as tf
    import numpy as np
    
    x_data=np.linspace(-1.,1.,300)[:, np.newaxis]
    noise=np.random.normal(0,0.05,x_data.shape)
    y_data=np.square(x_data)+noise
    
    def add_layer(input,in_size,out_size,activation_function=None,dropout_function=False):
        Weights=tf.Variable(tf.random_normal([in_size,out_size]))
        biases=tf.Variable(tf.zeros([1,out_size])+0.1)
        Wx_plus_b=tf.matmul(input,Weights)+biases
    
        if dropout_function==True:
            Wx_plus_b=tf.nn.dropout(Wx_plus_b,keep_prob=1)
        else:
            pass
    
        if activation_function is None:
            outputs=Wx_plus_b
        else:
            outputs=activation_function(Wx_plus_b)
        return outputs
    
    xs = tf.placeholder(tf.float32, [None, 1])
    ys = tf.placeholder(tf.float32, [None, 1])
    
    layer1=add_layer(xs,1,10,activation_function=tf.nn.relu)
    predict=add_layer(layer1,10,1)
    
    loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-predict),reduction_indices=[1]))
    train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    init=tf.global_variables_initializer()
    sess=tf.Session()
    sess.run(init)
    
    for i in range(100):
        sess.run(train_step,feed_dict={xs: x_data,ys: y_data})
        if i%5==0:
            print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))

    输出结果:

    0.256632
    0.0532672
    0.0364148
    0.0264385
    0.0202409
    0.0164314
    0.0141813
    0.0129079
    0.0121878
    0.0117478
    0.0114399
    0.0111906
    0.0109715
    0.0107702
    0.0105785
    0.010393
    0.0102144
    0.0100426
    0.00987562
    0.00971407

    这里举例 用过dropout后,loss变得更大,是因为我这里所用数据较少,用更多的训练集去测试,dropout会变现的很好!

  • 相关阅读:
    MySQL之数据表的插入内容 空与非空(六)
    输出杨辉三角形
    输入三个double型的数据,放入到a,b,c三个变量中去,使用条件结构与交换逻辑将这三个变量中的值从小到大排列。
    软件测试
    过程设计工具
    设计原理
    总体设计
    生活,也让别人生活
    计算器案例
    需求分析
  • 原文地址:https://www.cnblogs.com/lovephysics/p/7220574.html
Copyright © 2020-2023  润新知