• 三、软件设计原则


    3,软件设计原则

    在软件开发中,为了提高软件系统的可维护性和可复用性,增加软件的可扩展性和灵活性,程序员要尽量根据6条原则来开发程序,从而提高软件开发效率、节约软件开发成本和维护成本。

    图形概览:

    3.1 单一职责原则

    概念:就一个类而言,应该仅有一个引起它变化的原因。
    解释:当我们在做编程的时候,很可能在一个类加上各种各样的功能。这样意味着,无论任何需求要来,你都需要更改这个类,这样其实是很糟糕的,维护麻烦,复用不可能,也缺乏灵活性。如果一个类承担的职责过多,就等于把这些职责耦合起来,一个职责变化可能会削弱或者抑制这个类完成其他职责的能力。这种耦合会导致脆弱的设计,当变化发生时,设计会遭到很多意想不到的破坏。

    如果违背单一责任原则:

    public class SingleResponsibilityTest {
        public static void main(String[] args) {
            Vehicle vehicle = new Vehicle();
            vehicle.run("汽车");
            vehicle.run("飞机"); // 这里就不符合实际
        }
    }
    
    /**
     * 如同上面所示,在调用第二次run传入“飞机”,打印出:飞机在地上驾驶
     * 这话是错的,原因就是违背了单一责任原则
     * 这种情况下,因为一个类出现多种责任,那么需要把该类分解成多个单一责任的类
     */
    class Vehicle {
        public void run(String vehicle) {
            System.out.println(vehicle + "在地上驾驶");
        }
    }
    

    现在来遵守单一责任原则:

    public class PerfectSingleResponsibilityTest {
        public static void main(String[] args) {
            RoadVehicle roadVehicle = new RoadVehicle();
            roadVehicle.run("汽车");
            SkyVehicle skyVehicle = new SkyVehicle();
            skyVehicle.fly("飞机");
        }
    }
    
    /**
     * 按照要求,分解单类多责任成多个单一责任的类
     */
    class RoadVehicle {
        public void run(String vehicle) {
            System.out.println(vehicle + "在地上驾驶");
        }
    }
    
    class SkyVehicle {
        public void fly(String vehicle) {
            System.out.println(vehicle + "在天上驾驶");
        }
    }
    

    其实因为此类的责任就两个(也可以三个,比如水上驾驶的),可以从一个类中把多个责任分解成多个方法,虽然跟单一责任原则规定的是类责任单一,但这里的方法遵守单一责任原则:

    public class SingleResponsibilityTest {
        public static void main(String[] args) {
            Vehicle vehicle = new Vehicle();
            vehicle.run("汽车");
            vehicle.fly("飞机"); 
        }
    }
    
    
    class Vehicle {
        public void run(String vehicle) {
            System.out.println(vehicle + "在地上驾驶");
        }
        
            public void fly(String vehicle) {
            System.out.println(vehicle + "在天上驾驶");
        }
    }
    

    单一原则的注意点:

    • 降低类的复杂度,一个类只负责一项责任,注意并不是代表一个类只能有一个方法,比如一个订单类,那么它就只管订单相关的东西;
    • 提高类的可读性,可维护性;
    • 降低变更引起的风险;
    • 通常情况下,应当遵守单一职责原则, 只有逻辑足够简单,才可以在方法级违反单一责任原则;只有类中 的方法数量足够少,也可以在方法级别保持单一责任原则。

    3.2 开闭原则

    对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。简言之,是为了使程序的扩展性好,易于维护和升级。

    想要达到这样的效果,我们需要使用接口和抽象类。

    因为抽象灵活性好,适应性广,只要抽象的合理,可以基本保持软件架构的稳定。而软件中易变的细节可以从抽象派生来的实现类来进行扩展,当软件需要发生变化时,只需要根据需求重新派生一个实现类来扩展就可以了。

    下面以 搜狗输入法 的皮肤为例介绍开闭原则的应用。

    【例】搜狗输入法 的皮肤设计。

    分析:搜狗输入法 的皮肤是输入法背景图片、窗口颜色和声音等元素的组合。用户可以根据自己的喜爱更换自己的输入法的皮肤,也可以从网上下载新的皮肤。这些皮肤有共同的特点,可以为其定义一个抽象类(AbstractSkin),而每个具体的皮肤(DefaultSpecificSkin和HeimaSpecificSkin)是其子类。用户窗体可以根据需要选择或者增加新的主题,而不需要修改原代码,所以它是满足开闭原则的。

    3.3 里氏代换原则

    里氏代换原则是面向对象设计的基本原则之一。

    里氏代换原则:任何基类可以出现的地方,子类一定可以出现。通俗理解:子类可以扩展父类的功能,但不能改变父类原有的功能。换句话说,子类继承父类时,除添加新的方法完成新增功能外,尽量不要重写父类的方法。

    如果通过重写父类的方法来完成新的功能,这样写起来虽然简单,但是整个继承体系的可复用性会比较差,特别是运用多态比较频繁时,程序运行出错的概率会非常大。

    下面看一个里氏替换原则中经典的一个例子

    【例】正方形不是长方形。

    在数学领域里,正方形毫无疑问是长方形,它是一个长宽相等的长方形。所以,我们开发的一个与几何图形相关的软件系统,就可以顺理成章的让正方形继承自长方形。

    代码如下:

    长方形类(Rectangle):

    public class Rectangle {
        private double length;
        private double width;
    
        public double getLength() {
            return length;
        }
    
        public void setLength(double length) {
            this.length = length;
        }
    
        public double getWidth() {
            return width;
        }
    
        public void setWidth(double width) {
            this.width = width;
        }
    }
    

    正方形(Square):

    由于正方形的长和宽相同,所以在方法setLength和setWidth中,对长度和宽度都需要赋相同值。

    public class Square extends Rectangle {
        
        public void setWidth(double width) {
            super.setLength(width);
            super.setWidth(width);
        }
    
        public void setLength(double length) {
            super.setLength(length);
            super.setWidth(length);
        }
    }
    

    类RectangleDemo是我们的软件系统中的一个组件,它有一个resize方法依赖基类Rectangle,resize方法是RectandleDemo类中的一个方法,用来实现宽度逐渐增长的效果。

    public class RectangleDemo {
        
        public static void resize(Rectangle rectangle) {
            while (rectangle.getWidth() <= rectangle.getLength()) {
                rectangle.setWidth(rectangle.getWidth() + 1);
            }
        }
    
        //打印长方形的长和宽
        public static void printLengthAndWidth(Rectangle rectangle) {
            System.out.println(rectangle.getLength());
            System.out.println(rectangle.getWidth());
        }
    
        public static void main(String[] args) {
            Rectangle rectangle = new Rectangle();
            rectangle.setLength(20);
            rectangle.setWidth(10);
            resize(rectangle);
            printLengthAndWidth(rectangle);
    
            System.out.println("============");
    
            Rectangle rectangle1 = new Square();
            rectangle1.setLength(10);
            resize(rectangle1);
            printLengthAndWidth(rectangle1);
        }
    }
    

    我们运行一下这段代码就会发现,假如我们把一个普通长方形作为参数传入resize方法,就会看到长方形宽度逐渐增长的效果,当宽度大于长度,代码就会停止,这种行为的结果符合我们的预期;假如我们再把一个正方形作为参数传入resize方法后,就会看到正方形的宽度和长度都在不断增长,代码会一直运行下去,直至系统产生溢出错误。所以,普通的长方形是适合这段代码的,正方形不适合。
    我们得出结论:在resize方法中,Rectangle类型的参数是不能被Square类型的参数所代替,如果进行了替换就得不到预期结果。因此,Square类和Rectangle类之间的继承关系违反了里氏代换原则,它们之间的继承关系不成立,正方形不是长方形。

    如何改进呢?此时我们需要重新设计他们之间的关系。抽象出来一个四边形接口(Quadrilateral),让Rectangle类和Square类实现Quadrilateral接口

    3.4 依赖倒转原则

    高层模块不应该依赖低层模块,两者都应该依赖其抽象;抽象不应该依赖细节,细节应该依赖抽象。简单的说就是要求对抽象进行编程,不要对实现进行编程,这样就降低了客户与实现模块间的耦合。

    下面看一个例子来理解依赖倒转原则

    【例】组装电脑

    现要组装一台电脑,需要配件cpu,硬盘,内存条。只有这些配置都有了,计算机才能正常的运行。选择cpu有很多选择,如Intel,AMD等,硬盘可以选择希捷,西数等,内存条可以选择金士顿,海盗船等。

    类图如下:

    代码如下:

    希捷硬盘类(XiJieHardDisk):

    public class XiJieHardDisk implements HardDisk {
    
        public void save(String data) {
            System.out.println("使用希捷硬盘存储数据" + data);
        }
    
        public String get() {
            System.out.println("使用希捷希捷硬盘取数据");
            return "数据";
        }
    }
    

    Intel处理器(IntelCpu):

    public class IntelCpu implements Cpu {
    
        public void run() {
            System.out.println("使用Intel处理器");
        }
    }
    

    金士顿内存条(KingstonMemory):

    public class KingstonMemory implements Memory {
    
        public void save() {
            System.out.println("使用金士顿作为内存条");
        }
    }
    

    电脑(Computer):

    public class Computer {
    
        private XiJieHardDisk hardDisk;
        private IntelCpu cpu;
        private KingstonMemory memory;
    
        public IntelCpu getCpu() {
            return cpu;
        }
    
        public void setCpu(IntelCpu cpu) {
            this.cpu = cpu;
        }
    
        public KingstonMemory getMemory() {
            return memory;
        }
    
        public void setMemory(KingstonMemory memory) {
            this.memory = memory;
        }
    
        public XiJieHardDisk getHardDisk() {
            return hardDisk;
        }
    
        public void setHardDisk(XiJieHardDisk hardDisk) {
            this.hardDisk = hardDisk;
        }
    
        public void run() {
            System.out.println("计算机工作");
            cpu.run();
            memory.save();
            String data = hardDisk.get();
            System.out.println("从硬盘中获取的数据为:" + data);
        }
    }
    

    测试类(TestComputer):

    测试类用来组装电脑。

    public class TestComputer {
        public static void main(String[] args) {
            Computer computer = new Computer();
            computer.setHardDisk(new XiJieHardDisk());
            computer.setCpu(new IntelCpu());
            computer.setMemory(new KingstonMemory());
    
            computer.run();
        }
    }
    

    上面代码可以看到已经组装了一台电脑,但是似乎组装的电脑的cpu只能是Intel的,内存条只能是金士顿的,硬盘只能是希捷的,这对用户肯定是不友好的,用户有了机箱肯定是想按照自己的喜好,选择自己喜欢的配件。

    根据依赖倒转原则进行改进:

    代码我们只需要修改Computer类,让Computer类依赖抽象(各个配件的接口),而不是依赖于各个组件具体的实现类。

    类图如下:

    电脑(Computer):

    public class Computer {
    
        private HardDisk hardDisk;
        private Cpu cpu;
        private Memory memory;
    
        public HardDisk getHardDisk() {
            return hardDisk;
        }
    
        public void setHardDisk(HardDisk hardDisk) {
            this.hardDisk = hardDisk;
        }
    
        public Cpu getCpu() {
            return cpu;
        }
    
        public void setCpu(Cpu cpu) {
            this.cpu = cpu;
        }
    
        public Memory getMemory() {
            return memory;
        }
    
        public void setMemory(Memory memory) {
            this.memory = memory;
        }
    
        public void run() {
            System.out.println("计算机工作");
        }
    }
    

    面向对象的开发很好的解决了这个问题,一般情况下抽象的变化概率很小,让用户程序依赖于抽象,实现的细节也依赖于抽象。即使实现细节不断变动,只要抽象不变,客户程序就不需要变化。这大大降低了客户程序与实现细节的耦合度。

    3.5 接口隔离原则

    客户端不应该被迫依赖于它不使用的方法;一个类对另一个类的依赖应该建立在最小的接口上。

    下面看一个例子来理解接口隔离原则

    【例】安全门案例

    我们需要创建一个黑马品牌的安全门,该安全门具有防火、防水、防盗的功能。可以将防火,防水,防盗功能提取成一个接口,形成一套规范。类图如下:

    上面的设计我们发现了它存在的问题,黑马品牌的安全门具有防盗,防水,防火的功能。现在如果我们还需要再创建一个传智品牌的安全门,而该安全门只具有防盗、防水功能呢?很显然如果实现SafetyDoor接口就违背了接口隔离原则,那么我们如何进行修改呢?看如下类图:

    代码如下:

    AntiTheft(接口):

    public interface AntiTheft {
        void antiTheft();
    }
    

    Fireproof(接口):

    public interface Fireproof {
        void fireproof();
    }
    

    Waterproof(接口):

    public interface Waterproof {
        void waterproof();
    }
    

    HeiMaSafetyDoor(类):

    public class HeiMaSafetyDoor implements AntiTheft,Fireproof,Waterproof {
        public void antiTheft() {
            System.out.println("防盗");
        }
    
        public void fireproof() {
            System.out.println("防火");
        }
    
    
        public void waterproof() {
            System.out.println("防水");
        }
    }
    

    ItcastSafetyDoor(类):

    public class ItcastSafetyDoor implements AntiTheft,Fireproof {
        public void antiTheft() {
            System.out.println("防盗");
        }
    
        public void fireproof() {
            System.out.println("防火");
        }
    }
    

    3.6 迪米特法则

    迪米特法则又叫最少知识原则。

    只和你的直接朋友交谈,不跟“陌生人”说话(Talk only to your immediate friends and not to strangers)。

    其含义是:如果两个软件实体无须直接通信,那么就不应当发生直接的相互调用,可以通过第三方转发该调用。其目的是降低类之间的耦合度,提高模块的相对独立性。

    迪米特法则中的“朋友”是指:当前对象本身、当前对象的成员对象、当前对象所创建的对象、当前对象的方法参数等,这些对象同当前对象存在关联、聚合或组合关系,可以直接访问这些对象的方法。

    下面看一个例子来理解迪米特法则

    【例】明星与经纪人的关系实例

    明星由于全身心投入艺术,所以许多日常事务由经纪人负责处理,如和粉丝的见面会,和媒体公司的业务洽淡等。这里的经纪人是明星的朋友,而粉丝和媒体公司是陌生人,所以适合使用迪米特法则。

    类图如下:

    代码如下:

    明星类(Star)

    public class Star {
        private String name;
    
        public Star(String name) {
            this.name=name;
        }
    
        public String getName() {
            return name;
        }
    }
    

    粉丝类(Fans)

    public class Fans {
        private String name;
    
        public Fans(String name) {
            this.name=name;
        }
    
        public String getName() {
            return name;
        }
    }
    

    媒体公司类(Company)

    public class Company {
        private String name;
    
        public Company(String name) {
            this.name=name;
        }
    
        public String getName() {
            return name;
        }
    }
    

    经纪人类(Agent)

    public class Agent {
        private Star star;
        private Fans fans;
        private Company company;
    
        public void setStar(Star star) {
            this.star = star;
        }
    
        public void setFans(Fans fans) {
            this.fans = fans;
        }
    
        public void setCompany(Company company) {
            this.company = company;
        }
    
        public void meeting() {
            System.out.println(fans.getName() + "与明星" + star.getName() + "见面了。");
        }
    
        public void business() {
            System.out.println(company.getName() + "与明星" + star.getName() + "洽淡业务。");
        }
    }
    

    3.7 合成复用原则

    合成复用原则是指:尽量先使用组合或者聚合等关联关系来实现,其次才考虑使用继承关系来实现。

    通常类的复用分为继承复用和合成复用两种。

    继承复用虽然有简单和易实现的优点,但它也存在以下缺点:

    1. 继承复用破坏了类的封装性。因为继承会将父类的实现细节暴露给子类,父类对子类是透明的,所以这种复用又称为“白箱”复用。
    2. 子类与父类的耦合度高。父类的实现的任何改变都会导致子类的实现发生变化,这不利于类的扩展与维护。
    3. 它限制了复用的灵活性。从父类继承而来的实现是静态的,在编译时已经定义,所以在运行时不可能发生变化。

    采用组合或聚合复用时,可以将已有对象纳入新对象中,使之成为新对象的一部分,新对象可以调用已有对象的功能,它有以下优点:

    1. 它维持了类的封装性。因为成分对象的内部细节是新对象看不见的,所以这种复用又称为“黑箱”复用。
    2. 对象间的耦合度低。可以在类的成员位置声明抽象。
    3. 复用的灵活性高。这种复用可以在运行时动态进行,新对象可以动态地引用与成分对象类型相同的对象。

    下面看一个例子来理解合成复用原则

    【例】汽车分类管理程序

    汽车按“动力源”划分可分为汽油汽车、电动汽车等;按“颜色”划分可分为白色汽车、黑色汽车和红色汽车等。如果同时考虑这两种分类,其组合就很多。类图如下:

    从上面类图我们可以看到使用继承复用产生了很多子类,如果现在又有新的动力源或者新的颜色的话,就需要再定义新的类。我们试着将继承复用改为聚合复用看一下。

    艾欧尼亚,昂扬不灭,为了更美好的明天而战(#^.^#)
  • 相关阅读:
    Notepad++编写Markdown
    解决Unable to create new native thread
    Outlook2016 新装进阶操作指南
    卷积神经网络
    反向传播算法
    神经网络的基本组成
    cs231n课程索引
    快速入门特征工程
    快速入门Sklearn
    快速入门Matplotlib
  • 原文地址:https://www.cnblogs.com/lovelywcc/p/14808802.html
Copyright © 2020-2023  润新知