• 图像处理之图像拼接二


    上次的图像拼接效果还是不够好,有鬼影。所有一直在想怎么解决。

    才发现基于拉普拉斯金字塔的图像融合是可以的。然后就找到原来还有最佳拼接缝一说。然后发现opencv高版本是带这个的,但是怎么解决呢?

    http://blog.csdn.net/wd1603926823/article/details/49536691

    http://blog.csdn.net/hanshuning/article/details/41960401

    http://blog.csdn.net/manji_lee/article/details/9002228

     

     

    还没解决

     

    1 找最佳缝合线模板

    2 调用拉普拉斯进行多分辨率融合

    opencv自带的stitch 貌似必须2.4版本以上才行,代码:

     1 #include "stdafx.h"
     2 #include <iostream>
     3 #include <fstream>
     4 #include <string>
     5 #include "opencv2/opencv_modules.hpp"
     6 #include "opencv2/highgui/highgui.hpp"
     7 #include "opencv2/stitching/detail/autocalib.hpp"
     8 #include "opencv2/stitching/detail/blenders.hpp"
     9 #include "opencv2/stitching/detail/camera.hpp"
    10 #include "opencv2/stitching/detail/exposure_compensate.hpp"
    11 #include "opencv2/stitching/detail/matchers.hpp"
    12 #include "opencv2/stitching/detail/motion_estimators.hpp"
    13 #include "opencv2/stitching/detail/seam_finders.hpp"
    14 #include "opencv2/stitching/detail/util.hpp"
    15 #include "opencv2/stitching/detail/warpers.hpp"
    16 #include "opencv2/stitching/warpers.hpp"
    17 #include <opencv2/stitching/stitcher.hpp>
    18 #include<time.h>
    19 using namespace std;
    20 using namespace cv;
    21 using namespace cv::detail;
    22 //定义参数
    23 
    24 bool try_use_gpu = false;
    25 vector<Mat> imgs;
    26 string result_name = "result.jpg";
    27 
    28 int main()
    29 {
    30     Mat img = imread("1.jpg");
    31     imgs.push_back(img);
    32     img = imread("2.jpg");
    33     imgs.push_back(img);
    34 
    35     Mat pano;
    36     Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
    37     Stitcher::Status status = stitcher.stitch(imgs, pano);
    38 
    39     if (status != Stitcher::OK)
    40     {
    41         cout << "Can't stitch images, error code = " << int(status) << endl;
    42         return -1;
    43     }
    44 
    45     imwrite(result_name, pano);
    46     return 0;
    47     system("pause");
    48     return 0;
    49 }

    傻瓜式的,无法改写的设置。

    然后改成另外一个可以改写的版本:

      1 #include "stdafx.h"
      2 #include <iostream>
      3 #include <fstream>
      4 #include <string>
      5 #include "opencv2/opencv_modules.hpp"
      6 #include "opencv2/highgui/highgui.hpp"
      7 #include "opencv2/stitching/detail/autocalib.hpp"
      8 #include "opencv2/stitching/detail/blenders.hpp"
      9 #include "opencv2/stitching/detail/camera.hpp"
     10 #include "opencv2/stitching/detail/exposure_compensate.hpp"
     11 #include "opencv2/stitching/detail/matchers.hpp"
     12 #include "opencv2/stitching/detail/motion_estimators.hpp"
     13 #include "opencv2/stitching/detail/seam_finders.hpp"
     14 #include "opencv2/stitching/detail/util.hpp"
     15 #include <opencv2/stitching/warpers.hpp>
     16 #include <opencv2/stitching/stitcher.hpp>
     17 #include<time.h>
     18 using namespace std;
     19 using namespace cv;
     20 using namespace cv::detail;
     21 //定义参数
     22 
     23 bool try_use_gpu = false;
     24 vector<Mat> imgs;
     25 string result_name = "result.jpg";
     26 
     27 int main()
     28 {
     29     clock_t start, finish;
     30     double totaltime;
     31     start = clock();
     32     int filenum = 2;
     33     char* fdir[] = { "1.jpg", "2.jpg", "3.jpg", "4.jpg", "5.jpg"};
     34     Mat img, pano;
     35     for (int i = 0; i < filenum; i++){
     36         img = imread(fdir[i]);
     37         imgs.push_back(img);
     38     }
     39     Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
     40     stitcher.setRegistrationResol(0.6);//为了加速,我选0.1,默认是0.6,最大值1最慢,此方法用于特征点检测阶段,如果找不到特征点,调高吧
     41     //stitcher.setSeamEstimationResol(0.1);//默认是0.1
     42     //stitcher.setCompositingResol(-1);//默认是-1,用于特征点检测阶段,找不到特征点的话,改-1
     43     stitcher.setPanoConfidenceThresh(1);//默认是1,见过有设0.6和0.4的
     44     stitcher.setWaveCorrection(false);//默认是true,为加速选false,表示跳过WaveCorrection步骤
     45     //stitcher.setWaveCorrectKind(detail::WAVE_CORRECT_HORIZ);//还可以选detail::WAVE_CORRECT_VERT ,波段修正(wave correction)功能(水平方向/垂直方向修正)。因为setWaveCorrection设的false,此语句没用
     46 
     47     //找特征点surf算法,此算法计算量大,但对刚体运动、缩放、环境影响等情况下较为稳定
     48     detail::SurfFeaturesFinder *featureFinder = new detail::SurfFeaturesFinder();
     49     stitcher.setFeaturesFinder(featureFinder);
     50 
     51     //找特征点ORB算法,但是发现草地这组图,这个算法不能完成拼接
     52     //detail::OrbFeaturesFinder *featureFinder = new detail::OrbFeaturesFinder();
     53     //stitcher.setFeaturesFinder(featureFinder);
     54 
     55     //Features matcher which finds two best matches for each feature and leaves the best one only if the ratio between descriptor distances is greater than the threshold match_conf.
     56     detail::BestOf2NearestMatcher *matcher = new detail::BestOf2NearestMatcher(false, 0.5f/*=match_conf默认是0.65,我选0.8,选太大了就没特征点啦,0.8都失败了*/);
     57     stitcher.setFeaturesMatcher(matcher);
     58 
     59     // Rotation Estimation,It takes features of all images, pairwise matches between all images and estimates rotations of all cameras.
     60     //Implementation of the camera parameters refinement algorithm which minimizes sum of the distances between the rays passing through the camera center and a feature,这个耗时短
     61     stitcher.setBundleAdjuster(new detail::BundleAdjusterRay());
     62     //Implementation of the camera parameters refinement algorithm which minimizes sum of the reprojection error squares.
     63     //stitcher.setBundleAdjuster(new detail::BundleAdjusterReproj());
     64 
     65     //Seam Estimation
     66     //Minimum graph cut-based seam estimator
     67     //stitcher.setSeamFinder(new detail::GraphCutSeamFinder(detail::GraphCutSeamFinderBase::COST_COLOR));//默认就是这个
     68     //stitcher.setSeamFinder(new detail::GraphCutSeamFinder(detail::GraphCutSeamFinderBase::COST_COLOR_GRAD));//GraphCutSeamFinder的第二种形式
     69     //啥SeamFinder也不用,Stub seam estimator which does nothing.
     70     stitcher.setSeamFinder(new detail::NoSeamFinder);
     71     //Voronoi diagram-based seam estimator.
     72     //stitcher.setSeamFinder(new detail::VoronoiSeamFinder);
     73 
     74     //exposure compensators曝光补偿
     75     //stitcher.setExposureCompensator(new detail::BlocksGainCompensator());//默认的就是这个
     76     //不要曝光补偿
     77     stitcher.setExposureCompensator(new detail::NoExposureCompensator());
     78     //Exposure compensator which tries to remove exposure related artifacts by adjusting image intensities
     79     //stitcher.setExposureCompensator(new detail::detail::GainCompensator());
     80     //Exposure compensator which tries to remove exposure related artifacts by adjusting image block intensities  
     81     //stitcher.setExposureCompensator(new detail::detail::BlocksGainCompensator()); 
     82 
     83     //Image Blenders
     84     //Blender which uses multi-band blending algorithm 
     85     stitcher.setBlender(new detail::MultiBandBlender(try_use_gpu));//默认的是这个
     86     //Simple blender which mixes images at its borders
     87     //stitcher.setBlender(new detail::FeatherBlender());//这个简单,耗时少
     88 
     89     //柱面?球面OR平面?默认为球面
     90     //PlaneWarper*  cw = new PlaneWarper();
     91     //SphericalWarper*  cw = new SphericalWarper();
     92     //CylindricalWarper*  cw = new CylindricalWarper();
     93     //stitcher.setWarper(cw);
     94 
     95     Stitcher::Status status = stitcher.estimateTransform(imgs);
     96     if (status != Stitcher::OK)
     97     {
     98         cout << "Can't stitch images, error code = " << int(status) << endl;
     99         return -1;
    100     }
    101     status = stitcher.composePanorama(pano);
    102     if (status != Stitcher::OK)
    103     {
    104         cout << "Can't stitch images, error code = " << int(status) << endl;
    105         return -1;
    106     }
    107     cout << "程序开始";
    108     imwrite(result_name, pano);
    109     finish = clock();
    110     totaltime = (double)(finish - start) / CLOCKS_PER_SEC;
    111     cout << "
    此程序的运行时间为" << totaltime << "秒!" << endl;
    112     system("pause");
    113     return 0;
    114 }

    可以设置一些,比如融合方式等。

    但是我现在的问题是知道拼接量,怎么使用光照补偿 曝光补偿和多分辨率融合呢?

     还有一种方法就是分解opencv stitch过程


    #include "stdafx.h"
    #include <iostream>
    #include <fstream>
    #include <string>
    #include "opencv2/opencv_modules.hpp"
    #include "opencv2/highgui/highgui.hpp"
    #include "opencv2/stitching/detail/autocalib.hpp"
    #include "opencv2/stitching/detail/blenders.hpp"
    #include "opencv2/stitching/detail/camera.hpp"
    #include "opencv2/stitching/detail/exposure_compensate.hpp"
    #include "opencv2/stitching/detail/matchers.hpp"
    #include "opencv2/stitching/detail/motion_estimators.hpp"
    #include "opencv2/stitching/detail/seam_finders.hpp"
    #include "opencv2/stitching/detail/util.hpp"
    #include "opencv2/stitching/detail/warpers.hpp"
    #include "opencv2/stitching/warpers.hpp"
    #include<time.h>
    using namespace std;
    using namespace cv;
    using namespace cv::detail;
    //定义参数
    vector<string> img_names; //图像名容器
    bool try_gpu = false;
    double work_megapix = 1;//图像匹配的分辨率大小,图像的面积尺寸变为work_megapix*100000

    double seam_megapix = 0.1;//拼接缝像素的大小
    double compose_megapix = 0.6;//拼接分辨率
    float conf_thresh = 1.f;//两幅图来自同一全景图的置信度
    WaveCorrectKind wave_correct = detail::WAVE_CORRECT_HORIZ;//波形校验,水平
    int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;//光照补偿方法,默认是gain_blocks
    float match_conf = 0.65f;//特征点检测置信等级,最近邻匹配距离与次近邻匹配距离的比值,surf默认为0.65
    int blend_type = Blender::MULTI_BAND;//融合方法,默认是多频段融合
    float blend_strength = 5;//融合强度,0 - 100.默认是5.
    string result_name = "result.jpg";//输出图像的文件名

    int main()
    {
    clock_t start, finish;
    double totaltime;
    start = clock();
    int argc = 2;
    char* argv[] = { "1.jpg", "2.jpg", "3.jpg", "4.jpg", "5.jpg", "6.jpg", "7.jpg"
    };
    for (int i = 0; i < argc; ++i)
    img_names.push_back(argv[i]);
    int num_images = static_cast<int>(img_names.size());
    double work_scale = 1, seam_scale = 1, compose_scale = 1;
    //特征点检测以及对图像进行预处理(尺寸缩放),然后计算每幅图形的特征点,以及特征点描述子
    cout << "Finding features..." << endl;

    Ptr<FeaturesFinder> finder;
    finder = new SurfFeaturesFinder();///采用Surf特征点检测

    Mat full_img1, full_img, img;
    vector<ImageFeatures> features(num_images);
    vector<Mat> images(num_images);
    vector<Size> full_img_sizes(num_images);
    double seam_work_aspect = 1;

    for (int i = 0; i < num_images; ++i)
    {
    full_img1 = imread(img_names[i]);
    resize(full_img1, full_img, Size(full_img1.cols, full_img1.rows));
    full_img_sizes[i] = full_img.size();

    //计算work_scale,将图像resize到面积在work_megapix*10^6以下
    work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));

    resize(full_img, img, Size(), work_scale, work_scale);
    //将图像resize到面积在work_megapix*10^6以下
    seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
    seam_work_aspect = seam_scale / work_scale;
    // 计算图像特征点,以及计算特征点描述子,并将img_idx设置为i
    (*finder)(img, features[i]);
    features[i].img_idx = i;
    cout << "Features in image #" << i + 1 << ": " << features[i].keypoints.size() << endl;
    //将源图像resize到seam_megapix*10^6,并存入image[]中
    resize(full_img, img, Size(), seam_scale, seam_scale);
    images[i] = img.clone();
    }

    finder->collectGarbage();
    full_img.release();
    img.release();

    //对图像进行两两匹配
    cout << "Pairwise matching" << endl;

    //使用最近邻和次近邻匹配,对任意两幅图进行特征点匹配
    vector<MatchesInfo> pairwise_matches;
    BestOf2NearestMatcher matcher(try_gpu, match_conf);//最近邻和次近邻法
    matcher(features, pairwise_matches); //对每两个图片进行匹配
    matcher.collectGarbage();
    //将置信度高于门限的所有匹配合并到一个集合中
    ///只留下确定是来自同一全景图的图片

    vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
    vector<Mat> img_subset;
    vector<string> img_names_subset;
    vector<Size> full_img_sizes_subset;
    for (size_t i = 0; i < indices.size(); ++i)
    {
    img_names_subset.push_back(img_names[indices[i]]);
    img_subset.push_back(images[indices[i]]);
    full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
    }

    images = img_subset;
    img_names = img_names_subset;
    full_img_sizes = full_img_sizes_subset;

    // 检查图片数量是否依旧满足要求
    num_images = static_cast<int>(img_names.size());
    if (num_images < 2)
    {
    cout << "Need more images" << endl;
    return -1;
    }

    HomographyBasedEstimator estimator;//基于单应性的估计量
    vector<CameraParams> cameras;//相机参数
    estimator(features, pairwise_matches, cameras);

    for (size_t i = 0; i < cameras.size(); ++i)
    {
    Mat R;
    cameras[i].R.convertTo(R, CV_32F);
    cameras[i].R = R;
    cout << "Initial intrinsics #" << indices[i] + 1 << ": " << cameras[i].K() << endl;
    }

    Ptr<detail::BundleAdjusterBase> adjuster;//光束调整器参数
    adjuster = new detail::BundleAdjusterRay();//使用Bundle Adjustment(光束法平差)方法对所有图片进行相机参数校正

    adjuster->setConfThresh(conf_thresh);//设置配置阈值
    Mat_<uchar> refine_mask = Mat::zeros(3, 3, CV_8U);
    refine_mask(0, 0) = 1;
    refine_mask(0, 1) = 1;
    refine_mask(0, 2) = 1;
    refine_mask(1, 1) = 1;
    refine_mask(1, 2) = 1;
    adjuster->setRefinementMask(refine_mask);
    (*adjuster)(features, pairwise_matches, cameras);//进行矫正


    // 求出的焦距取中值和所有图片的焦距并构建camera参数,将矩阵写入camera
    vector<double> focals;
    for (size_t i = 0; i < cameras.size(); ++i)
    {
    cout << "Camera #" << indices[i] + 1 << ": " << cameras[i].K() << endl;
    focals.push_back(cameras[i].focal);
    }

    sort(focals.begin(), focals.end());
    float warped_image_scale;
    if (focals.size() % 2 == 1)
    warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
    else
    warped_image_scale = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;

    ///波形矫正
    vector<Mat> rmats;
    for (size_t i = 0; i < cameras.size(); ++i)
    rmats.push_back(cameras[i].R);
    waveCorrect(rmats, wave_correct);////波形矫正
    for (size_t i = 0; i < cameras.size(); ++i)
    cameras[i].R = rmats[i];


    cout << "Warping images ... " << endl;
    vector<Point> corners(num_images);//统一坐标后的顶点
    vector<Mat> masks_warped(num_images);
    vector<Mat> images_warped(num_images);
    vector<Size> sizes(num_images);
    vector<Mat> masks(num_images);//融合掩码
    // 准备图像融合掩码
    for (int i = 0; i < num_images; ++i)
    {
    masks[i].create(images[i].size(), CV_8U);
    masks[i].setTo(Scalar::all(255));
    }

    //弯曲图像和融合掩码

    Ptr<WarperCreator> warper_creator;
    warper_creator = new cv::SphericalWarper();

    Ptr<RotationWarper> warper = warper_creator->create(static_cast<float>(warped_image_scale * seam_work_aspect));

    for (int i = 0; i < num_images; ++i)
    {
    Mat_<float> K;
    cameras[i].K().convertTo(K, CV_32F);
    float swa = (float)seam_work_aspect;
    K(0, 0) *= swa; K(0, 2) *= swa;
    K(1, 1) *= swa; K(1, 2) *= swa;

    corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);//计算统一后坐标顶点
    sizes[i] = images_warped[i].size();

    warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);//弯曲当前图像
    }

    vector<Mat> images_warped_f(num_images);
    for (int i = 0; i < num_images; ++i)
    images_warped[i].convertTo(images_warped_f[i], CV_32F);


    Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(expos_comp_type);//建立补偿器以进行关照补偿,补偿方法是gain_blocks
    compensator->feed(corners, images_warped, masks_warped);

    //查找接缝
    Ptr<SeamFinder> seam_finder;
    seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR);
    seam_finder->find(images_warped_f, corners, masks_warped);

    //namedWindow("images_warped", 0);
    //imshow("images_warped", images_warped[0]);
    //namedWindow("masks_warped", 0);
    //imshow("masks_warped", masks_warped[0]);

    // 释放未使用的内存
    images.clear();
    images_warped.clear();
    images_warped_f.clear();
    masks.clear();

    //////图像融合
    cout << "Compositing..." << endl;


    Mat img_warped, img_warped_s;
    Mat dilated_mask, seam_mask, mask, mask_warped;
    Ptr<Blender> blender;

    double compose_work_aspect = 1;

    for (int img_idx = 0; img_idx < num_images; ++img_idx)
    {
    cout << "Compositing image #" << indices[img_idx] + 1 << endl;
    //由于以前进行处理的图片都是以work_scale进行缩放的,所以图像的内参
    //corner(统一坐标后的顶点),mask(融合的掩码)都需要重新计算

    // 读取图像和做必要的调整

    full_img1 = imread(img_names[img_idx]);
    resize(full_img1, full_img, Size(full_img1.cols, full_img1.rows));
    compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
    compose_work_aspect = compose_scale / work_scale;
    // 更新弯曲图像比例
    warped_image_scale *= static_cast<float>(compose_work_aspect);
    warper = warper_creator->create(warped_image_scale);

    // 更新corners和sizes
    for (int i = 0; i < num_images; ++i)
    {
    // 更新相机以下特性
    cameras[i].focal *= compose_work_aspect;
    cameras[i].ppx *= compose_work_aspect;
    cameras[i].ppy *= compose_work_aspect;

    // 更新corners和sizes
    Size sz = full_img_sizes[i];
    if (std::abs(compose_scale - 1) > 1e-1)
    {
    sz.width = cvRound(full_img_sizes[i].width * compose_scale);
    sz.height = cvRound(full_img_sizes[i].height * compose_scale);
    }

    Mat K;
    cameras[i].K().convertTo(K, CV_32F);
    Rect roi = warper->warpRoi(sz, K, cameras[i].R);
    corners[i] = roi.tl();
    sizes[i] = roi.size();
    }

    if (abs(compose_scale - 1) > 1e-1)
    resize(full_img, img, Size(), compose_scale, compose_scale);
    else
    img = full_img;
    full_img.release();
    Size img_size = img.size();

    Mat K;
    cameras[img_idx].K().convertTo(K, CV_32F);
    // 扭曲当前图像
    warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);

    // 扭曲当前图像掩模

    mask.create(img_size, CV_8U);
    mask.setTo(Scalar::all(255));
    warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);

    // 曝光补偿
    compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);


    img_warped.convertTo(img_warped_s, CV_16S);
    img_warped.release();
    img.release();
    mask.release();

    dilate(masks_warped[img_idx], dilated_mask, Mat());
    resize(dilated_mask, seam_mask, mask_warped.size());
    mask_warped = seam_mask & mask_warped;

    //初始化blender
    if (blender.empty())
    {
    blender = Blender::createDefault(blend_type, try_gpu);
    Size dst_sz = resultRoi(corners, sizes).size();
    float blend_width = sqrt(static_cast<float>(dst_sz.area())) * blend_strength / 100.f;
    if (blend_width < 1.f)
    blender = Blender::createDefault(Blender::NO, try_gpu);
    else
    {
    MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(static_cast<Blender*>(blender));
    mb->setNumBands(static_cast<int>(ceil(log(blend_width) / log(2.)) - 1.));
    cout << "Multi-band blender, number of bands: " << mb->numBands() << endl;
    }
    //根据corners顶点和图像的大小确定最终全景图的尺寸
    blender->prepare(corners, sizes);
    }

    // // 融合当前图像
    blender->feed(img_warped_s, mask_warped, corners[img_idx]);
    //blender->feed(img, mask, corners[img_idx]);
    }

    Mat result, result_mask;
    blender->blend(result, result_mask);

    imwrite(result_name, result);

    namedWindow("result", 0);
    imshow("result", result);
    finish = clock();
    totaltime = (double)(finish - start) / CLOCKS_PER_SEC;
    cout << " 此程序的运行时间为" << totaltime << "秒!" << endl;
    waitKey(0);
    system("pause");
    return 0;

    waitKey(0);
    system("pause");
    return 0;

    }

    上面的方法现在存在两个问题:

    1 conner 左上角的点是怎么获得的?

    2 有了左上角的点,用图割方法获得最佳分割线,然后调用拉普拉斯金字塔能否实现完美拼接。

  • 相关阅读:
    4. Git撤销修改
    3. Git如何管理修改
    2. Git的工作区、暂存区和版本库
    1. Git创建仓库、查看工作区状态
    微信平台接入Web页面功能接口(C#)
    Python之路【第六篇】:Python运算符
    Python之路【第五篇】:Python基本数据类型
    Python之路【第四篇】:Pycharm集成开发环境
    Python之路【第二篇】:Python简介、解释器与编码
    Python之路【第七篇】:Python流程控制
  • 原文地址:https://www.cnblogs.com/love6tao/p/6002338.html
Copyright © 2020-2023  润新知