数列分块入门3
题意概括
区间加法,区间求前驱。
写在前面
这题的方法与分块2方法极其类似,建议自行解决。
正题
和上一题类似,但是二分不是用来计数的,而是用来求小于c的最大值的。然后对于不完整快,将小于c的值求最大值,再与所有块中二分结果求最大值即可。(其他思路上一篇题解已经讲了,这里不再复述,代码注释也懒得打了,因为比较简单,很容易理解)
代码
#include<cstdio>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
#define MAXN 100005
int n, m, a[MAXN], p[MAXN], b[1005], mm;
vector<int> v[1005];
int opt, l, r, c;
int EF( vector<int> vec, int x ){
int l, r, mid, ans(-1);
l = 0; r = vec.size() - 1;
while( l <= r ){
mid = ( l + r ) >> 1;
if ( vec[mid] < x ){
ans = mid;
l = mid + 1;
}
else r = mid - 1;
}
return ans;
}
int query( int l, int r, int c ){
int ans(-1);
if ( p[l] == p[r] ){
for ( int i = l; i <= r; ++i )
if ( a[i] + b[p[l]] < c ) ans = max( ans, a[i] + b[p[l]] );
return ans;
}
for ( int i = l; p[i] == p[l]; ++i )
if ( a[i] + b[p[i]] < c ) ans = max( ans, a[i] + b[p[l]] );
for ( int i = r; p[i] == p[r]; --i )
if ( a[i] + b[p[i]] < c ) ans = max( ans, a[i] + b[p[r]] );
for ( int i = p[l] + 1; i <= p[r] - 1; ++i ){
int t(EF( v[i], c - b[i] ));
if ( t >= 0 ) ans = max( ans, v[i][t] + b[i] );
}
return ans;
}
void re( int x ){
v[x].clear();
int be(( x - 1 ) * m + 1);
for ( int i = be; p[i] == p[be]; i++ ) v[x].push_back( a[i] );
sort( v[x].begin(), v[x].end() );
}
void Add( int l, int r, int c ){
if ( p[l] == p[r] ){
for ( int i = l; i <= r; ++i ) a[i] += c;
re( p[l] ); return;
}
for ( int i = l; p[i] == p[l]; ++i ) a[i] += c;
re(p[l]);
for ( int i = r; p[i] == p[r]; --i ) a[i] += c;
re(p[r]);
for ( int i = p[l] + 1; i < p[r]; ++i ) b[i] += c;
}
int main(){
scanf( "%d", &n ); m = (int)sqrt(n);
for ( int i = 1; i <= n; ++i ) p[i] = ( i - 1 ) / m + 1, mm = p[i];
for ( int i = 1; i <= n; ++i ) scanf( "%d", &a[i] );
for ( int i = 1; i <= n; ++i ) v[p[i]].push_back(a[i]);
for ( int i = 1; i <= mm; ++i ) sort( v[i].begin(), v[i].end() );
for ( int i = 1; i <= n; ++i ){
scanf( "%d%d%d%d", &opt, &l, &r, &c );
if ( opt ) printf( "%d
", query( l, r, c ) );
else Add( l, r, c );
}
return 0;
}
总结
分块切记要触类旁通,充分发挥分块的灵活性。
数列分块系列目录
数列分块入门3 <-