• 用matplotlib对数据可视化


    下图是要用到的数据集,反映了从1984到2016年的失业率的变化

     1.导入可视化模块import matlibplot.pyplot as plt, 函数plt.plot(x, y)确定折线图的点,x是由这些点的x坐标组成的列表,y是由这些点的y坐标组成

    的列表。plt.show()显示图像,plt.xlabel()给x轴命名,plt.xticks()可以设置x坐标刻度点旋转指定角度,plt.title()给折线图命名

      下面的代码是以上函数的应用

     1 import pandas as pd
     2 import numpy as np
     3 import matplotlib.pyplot as plt
     4 #画出1984年失业率折线图
     5 unrated = pd.read_csv("C:/学习/python/hello/UNRATE.csv")
     6 first_twelve = unrated.head(12)
     7 
     8 x_series = first_twelve["DATE"]
     9 y_series = first_twelve["VALUE"]
    10 
    11 plt.xticks(rotation=90)
    12 plt.xlabel("Month")
    13 plt.ylabel("Unemployment rate")
    14 
    15 plt.title("Unemployment rate trends on 1984")
    16 
    17 plt.plot(x_series, y_series)
    18 plt.show()

      运行结果如下

    2.通过plt.subplot(n, m, x)在一个figure中添加多个子图, n和m表示子图的布局,分别代表行数和列数,x表示从左往右,从上往下数的第x个子图

    下面的代码提供了该函数使用实例

     1 import pandas as pd
     2 import numpy as np
     3 import matplotlib.pyplot as plt
     4 
     5 plt.figure(figsize=(20, 16))
     6 ax1 = plt.subplot(2, 3, 1)
     7 ax2 = plt.subplot(2, 3, 2)
     8 ax3 = plt.subplot(2, 3, 3)
     9 ax5 = plt.subplot(2, 3, 5)
    10 plt.show()

    运行结果如下

    3.下面的代码是在一个坐标轴中画多个折线图的示例

     1 import pandas as pd
     2 import numpy as np
     3 import matplotlib.pyplot as plt
     4 
     5 unrated = pd.read_csv("C:/学习/python/hello/UNRATE.csv")
     6 unrated["DATE"] = pd.to_datetime(unrated["DATE"])
     7 color = ["red", "yellow", "blue", "green", "purple"]
     8 plt.figure(figsize=(20, 16))
     9 for i in range(5):
    10     sub_unrated = unrated.loc[i*12:(i+1)*12-1]
    11     sub_unrated_x = sub_unrated['DATE'].dt.month
    12     sub_unrated_y = sub_unrated["VALUE"]
    13     label = 1948+i
    14     plt.plot(sub_unrated_x, sub_unrated_y, color=color[i], label=label)
    15 plt.legend(loc="best")
    16 plt.show()

    运行结果如下

     4.figure和subplot的定义顺序决定了subplot是画在哪个figure中。当代码中定义了多个figure时候,紧接着该figure定义的subplot才画在该figure中,

    如下代码所示,定义了figure1和figure2,ax1和ax2在figure1中,ax在figure2中。

    1 plt.figure(figsize=(20, 16))
    2 ax1 = plt.subplot(2,2,1)
    3 plt.figure(figsize=(14, 12))
    4 ax = plt.subplot(1, 1, 1)
    5 
    6 plt.show()

    5.用matplotlib画条形图

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt

    reviews = pd.read_csv("C:/学习/python/hello/fandango_score_comparison.csv")
    cols = ["FILM", "RT_user_norm", "Metacritic_user_nom", "IMDB_norm", "Fandango_Ratingvalue", "Fandango_Stars"]
    norm_reviews = reviews[cols]

    num_cols = ["RT_user_norm", "Metacritic_user_nom", "IMDB_norm", "Fandango_Ratingvalue", "Fandango_Stars"]
    bar_height = norm_reviews.loc[0, num_cols].values #第一部电影的评价,注意利用loc索引某一行的用法,可以添加第二维

    bar_position = 1 + np.arange(5) #arange返回的是ndarray类型,range返回的是list类,使用arange需要用numpy
    plt.figure(figsize=(10, 10))
    ax = plt.subplot(1, 1, 1)
    ax.bar(bar_position, bar_height, 0.3) #bar_position是条形图的x坐标(中点坐标),bar_height是高,0.3是宽
    #设置x坐标刻度
    tick_positions = range(1, 6)
    ax.set_xticks(tick_positions)
    ax.set_xticklabels(num_cols)

    #设置x轴和y轴名称
    ax.set_xlabel("Rating Source")
    ax.set_ylabel("Average Rating")
    ax.set_title("Whatever")
    plt.show()

    运行结果如下

      将上面的代码改变几处,就会成为横着的条形图了。代码如下所示(改动之处用白底红字加粗下划线标出来了)

     1 import pandas as pd
     2 import numpy as np
     3 import matplotlib.pyplot as plt
     4 
     5 reviews = pd.read_csv("C:/学习/python/hello/fandango_score_comparison.csv")
     6 cols = ["FILM", "RT_user_norm", "Metacritic_user_nom", "IMDB_norm", "Fandango_Ratingvalue", "Fandango_Stars"]
     7 norm_reviews = reviews[cols]
     8 
     9 num_cols = ["RT_user_norm", "Metacritic_user_nom", "IMDB_norm", "Fandango_Ratingvalue", "Fandango_Stars"]
    10 bar_height = norm_reviews.loc[0, num_cols].values  #第一部电影的评价,注意利用loc索引某一行的用法,可以添加第二维
    11 
    12 bar_position = 1 + np.arange(5)  #arange返回的是ndarray类型,range返回的是list类,使用arange需要用numpy
    13 plt.figure(figsize=(10, 10))
    14 ax = plt.subplot(1, 1, 1)
    15 ax.barh(bar_position, bar_height, 0.3)  #bar_position是条形图的x坐标(中点坐标),bar_height是高,0.3是宽
    16 #设置x坐标刻度
    17 tick_positions = range(1, 6)
    18 ax.set_yticks(tick_positions)
    19 ax.set_yticklabels(num_cols)
    20 
    21 #设置x轴和y轴名称
    22 ax.set_ylabel("Rating Source")
    23 ax.set_xlabel("Average Rating")
    24 ax.set_title("Whatever")
    25 plt.show()

    运行结果如下

    6.画散点图

    1 import pandas as pd
    2 import numpy as np
    3 import matplotlib.pyplot as plt
    4 
    5 reviews = pd.read_csv("C:/学习/python/hello/fandango_score_comparison.csv")
    6 plt.figure(figsize=(10,10))
    7 ax = plt.subplot(1, 1, 1)
    8 ax.scatter(reviews["RT_norm"], reviews["Metacritic_user_nom"])
    9 plt.show()

    运行结果如下

    7.设a是Series类型,b = a.value_counts()可以得到a的一个频数统计,b是Series结构,b的index是a的值,b的value是该值出现的频数。

    如下代码所示

     1 import pandas as pd
     2 import numpy as np
     3 import matplotlib.pyplot as plt
     4 
     5 reviews = pd.read_csv("C:/学习/python/hello/fandango_score_comparison.csv")
     6 cols = ["FILM", "RT_user_norm", "Metacritic_user_nom", "Fandango_Ratingvalue"]
     7 norm_reviews = reviews[cols]
     8 #fandango_distribution是Series结构,index是原来的列的值,value是该值出现的频率
     9 fandango_distribution = norm_reviews["Fandango_Ratingvalue"].value_counts()
    10 print(fandango_distribution.head(5))
    11 print(type(fandango_distribution))
    12 print(fandango_distribution.index)

    运行结果如下

    8.我们来画直方图

     1 import pandas as pd
     2 import numpy as np
     3 import matplotlib.pyplot as plt
     4 
     5 reviews = pd.read_csv("C:/学习/python/hello/fandango_score_comparison.csv")
     6 cols = ["FILM", "RT_user_norm", "Metacritic_user_nom","IMDB_norm", "Fandango_Ratingvalue"]
     7 norm_reviews = reviews[cols]
     8 plt.figure(figsize=(10, 10))
     9 ax = plt.subplot(1, 1, 1)
    10 ax.hist(norm_reviews["RT_user_norm"], bins=20) #参数bins表示直方图的x轴分成多少区间
    11 
    12 plt.show()

    运行结果如下

  • 相关阅读:
    AODV路由协议的路由缓存队列详解
    NS各种常用资料(转)
    Zigbee之旅(二):第一个CC2430程序——LED灯闪烁实验(转)
    计算机核心期刊一览【转】
    NS2中能量模型的添加
    Zigbee之旅(一):开天辟地(转)
    NS2能量模型
    Zigbee之旅(三):几个重要的CC2430基础实验——外部中断(转)
    如何画MDI主窗体的背景
    Speed up the display of Delphi list components
  • 原文地址:https://www.cnblogs.com/loubin/p/11257171.html
Copyright © 2020-2023  润新知