• 机器学习15 手写数字识别-小数据集


    1.手写数字数据集

    • from sklearn.datasets import load_digits
    • digits = load_digits()
    from sklearn.datasets import load_digits
    digits = load_digits()

    2.图片数据预处理

    • x:归一化MinMaxScaler()
    • y:独热编码OneHotEncoder()或to_categorical
    • 训练集测试集划分
    • 张量结构
    import numpy as np
    from sklearn.preprocessing import MinMaxScaler
    X_data = digits.data.astype(np.float32)
    scaler = MinMaxScaler()
    X_data = scaler.fit_transform(X_data)
    print("归一化后",X_data)
    X=X_data.reshape(-1,8,8,1)
    from sklearn.preprocessing import OneHotEncoder
    y = digits.target.astype(np.float32).reshape(-1,1)
    Y = OneHotEncoder().fit_transform(y).todense()
    print("独热编码:",Y)
    from sklearn.model_selection import train_test_split
    X_train,X_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,random_state=0,stratify=Y)
    print("X_data.shape:",X_data.shape)
    print("X.shape:",X.shape)

    3.设计卷积神经网络结构

    • 绘制模型结构图,并说明设计依据。
      from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import Dense,Dropout,Conv2D,MaxPool2D,Flatten
      #3、建立模型
      model = Sequential()
      ks = (3, 3)  # 卷积核的大小
      input_shape = X_train.shape[1:]
      # 一层卷积,padding='same',tensorflow会对输入自动补0
      model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))
      # 池化层1
      model.add(MaxPool2D(pool_size=(2, 2)))
      # 防止过拟合,随机丢掉连接
      model.add(Dropout(0.25))
      # 二层卷积
      model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))
      # 池化层2
      model.add(MaxPool2D(pool_size=(2, 2)))
      model.add(Dropout(0.25))
      # 三层卷积
      model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
      # 四层卷积
      model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))
      # 池化层3
      model.add(MaxPool2D(pool_size=(2, 2)))
      model.add(Dropout(0.25))
      # 平坦层
      model.add(Flatten())
      # 全连接层
      model.add(Dense(128, activation='relu'))
      model.add(Dropout(0.25))
      # 激活函数softmax
      model.add(Dense(10, activation='softmax'))
      print(model.summary())

    4.模型训练

    # 画Train History图
    plt.rcParams['font.sans-serif'] = ['FangSong'] # 指定字体
    def show_train_history(train_history, train, validation):
        plt.plot(train_history.history[train])
        plt.plot(train_history.history[validation])
        plt.ylabel('train')
        plt.xlabel('epoch')
        plt.legend(['train', 'validation'], loc='upper left')
        plt.show()
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    train_history = model.fit(x=x_train,y=y_train,validation_split=0.2,batch_size=300,epochs=10,verbose=2)
    show_train_history(train_history,"accuracy","val_accuracy")  # 准确率
    show_train_history(train_history,"loss","val_loss")  # 损失率

     

    5.模型评价

    • model.evaluate()
    • 交叉表与交叉矩阵
    • pandas.crosstab
    • seaborn.heatmap
    • import pandas as pd
      import seaborn as sns
      score = model.evaluate(X_test, y_test)
      print('score:', score)
      y_pred = model.predict_classes(X_test)
      print('y_pred:', y_pred[:10])
      y_test1 = np.argmax(y_test, axis=1).reshape(-1)
      y_true = np.array(y_test1)[0]
      pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict'])
      y_test1 = y_test1.tolist()[0]
      a = pd.crosstab(np.array(y_test1), y_pred, rownames=['Lables'], colnames=['Predict'])
      df = pd.DataFrame(a)
      sns.heatmap(df, annot=True, cmap="Blues", linewidths=0.2, linecolor='G')
      plt.show()
  • 相关阅读:
    后台java,前台extjs文件下载
    gridPanel可拖拽排序
    Extjs 获取输入框焦点,并选中值
    java poi对Excel文件加密
    java poi 读取有密码加密的Excel文件
    SSL 与 数字证书 的基本概念和工作原理
    splay树
    树剖版lca
    树链剖分
    kruskal重构树
  • 原文地址:https://www.cnblogs.com/longlog/p/13088562.html
Copyright © 2020-2023  润新知