• 线性代数:逆变换


    1、逆变换
    恒等变换,定义:Ix : Rn->Rm, In(X) = X;相当于从自身到自身的变换;
    逆变换定义,变换Fx : Rn->Rm, 如果存在F‘y : Rm->Rn,   F'oF = In 且 FoF' = Im,F’称之为F的逆变换,也可以叫逆函数; 这两个条件实际上时可以相互证明的;从形式上也可以看出F和F’互为逆函数。
    F存在逆函数,可以说F是可逆的。

    F可逆,也意味着F(x) = V,方程存在唯一解。

    2、满射和单射
    如果一个函数F : X->Y,对于Y的每个成员y,至少存在一个x满足F(x)=y,那么函数F是一个满射函数;
    如果对于对于Y的每个成员y,最多存在一个x满足F(x)=y,那么函数F是一个单射函数。
    如果一个函数是可逆的,那么它必然是一个满射且是一个单射。

    3、如何判断变换是否可逆
    变换可以用矩阵乘法Ax = y表示,A是一个mxn的矩阵;
    首先它必须是一个满射,那么向量空间Rm的任意向量必须可以表示为Ax,那么A的列空间==Rm,因此A的秩==m;
    其次,必须是一个单射,对于Ax=y,每个合法的y值,方程有唯一解,那么A的零空间,只能含有一个向量:零向量。此时A的列向量是线性无关的,因此A的秩==n。

    第二点的证明:假设Ax = b的一个解为X,而Ax=0的解空间不止包含零向量,那么   X+Xn(Xn是零空间的非零向量)也是Ax=b的有效解。这样Ax=b就有非唯一解。

    可见此时m==n,A是一个方阵。

    4、逆变换也是线性变换
    假设变换T是线性变换,且可逆,那么T的逆变换T’也是一个线性变换:T'(a+b) = T'oT(T'(a)+T'(b)) = T'(ToT'(a)+ToT'(b)) = T'(a+b);
    T'(ca) =  T'oT(T'(ca)) = T'(cToT'(a))=T'(T(cT'(a))) = cT'(a)。

    5、变换与逆变换的矩阵互逆
    ToT' = A*A' = In;   恒等变换的矩阵必然为单位矩阵,所以A,A‘互为逆矩阵。

    6、求逆矩阵的方法
    可以用求矩阵A简化阶梯形的方式,来求逆矩阵。通过n步行变换将A转化乘简化阶梯形,进一步转化为单位矩阵,每一步变换,相当于对A的所有列向量进行了一次相同的线性变换,这个变换可以用变换矩阵Si来表示。有S1S2...SnA = I =》 S1S2....Sn = A'。                                      

    因此只要再对A做行变换的时候,对I做相同的变换,当A变成了单位矩阵,I就变成了A’。

    7、2x2矩阵的逆
    二维矩阵[{a,c},{b,d}], 依据上述方法,可以得出它的逆矩阵(1/(ad-bc)) [{d,-c}, {-b,a}]。
    只要ad-bc不为零,矩阵就是可逆的。
    ad-bc又叫做矩阵的行列式。

  • 相关阅读:
    树莓派交叉编译环境搭建
    手机购买怎样识别假货——一点心得体会分享!
    Ubuntu 网站服务器环境搭建
    转载:Raspberry Pi 树莓派入门
    Python中的条件选择和循环语句
    关于VMare中安装Ubuntu的一些说明
    如何去掉系统快捷方式的箭头和更改登录界面背景图片
    重装系统后,硬盘分区丢失的解决办法
    Python中的字符串
    Python的基础语法
  • 原文地址:https://www.cnblogs.com/longhuihu/p/10423321.html
Copyright © 2020-2023  润新知