参考链接:https://mp.weixin.qq.com/s/89IHjqnw-JJ1Ak_YjWdHvA
#include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/features2d/features2d.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/calib3d/calib3d.hpp> // #include "extra.h" // use this if in OpenCV2 using namespace std; using namespace cv; /**************************************************** * 本程序演示了如何使用2D-2D的特征匹配估计相机运动 * **************************************************/ void find_feature_matches( const Mat &img_1, const Mat &img_2, std::vector<KeyPoint> &keypoints_1, std::vector<KeyPoint> &keypoints_2, std::vector<DMatch> &matches); void pose_estimation_2d2d( std::vector<KeyPoint> keypoints_1, std::vector<KeyPoint> keypoints_2, std::vector<DMatch> matches, Mat &R, Mat &t); // 像素坐标转相机归一化坐标 Point2d pixel2cam(const Point2d &p, const Mat &K); int main(int argc, char **argv) { if (argc != 3) { cout << "usage: pose_estimation_2d2d img1 img2" << endl; return 1; } //-- 读取图像 Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR); Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR); assert(img_1.data && img_2.data && "Can not load images!"); vector<KeyPoint> keypoints_1, keypoints_2; vector<DMatch> matches; find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches); cout << "一共找到了" << matches.size() << "组匹配点" << endl; //-- 估计两张图像间运动 Mat R, t; pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t); //-- 验证E=t^R*scale Mat t_x = (Mat_<double>(3, 3) << 0, -t.at<double>(2, 0), t.at<double>(1, 0), t.at<double>(2, 0), 0, -t.at<double>(0, 0), -t.at<double>(1, 0), t.at<double>(0, 0), 0); cout << "t^R=" << endl << t_x * R << endl; //-- 验证对极约束 Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); for (DMatch m: matches) { Point2d pt1 = pixel2cam(keypoints_1[m.queryIdx].pt, K); Mat y1 = (Mat_<double>(3, 1) << pt1.x, pt1.y, 1); Point2d pt2 = pixel2cam(keypoints_2[m.trainIdx].pt, K); Mat y2 = (Mat_<double>(3, 1) << pt2.x, pt2.y, 1); Mat d = y2.t() * t_x * R * y1; cout << "epipolar constraint = " << d << endl; } return 0; } void find_feature_matches(const Mat &img_1, const Mat &img_2, std::vector<KeyPoint> &keypoints_1, std::vector<KeyPoint> &keypoints_2, std::vector<DMatch> &matches) { //-- 初始化 Mat descriptors_1, descriptors_2; // used in OpenCV3 Ptr<FeatureDetector> detector = ORB::create(); Ptr<DescriptorExtractor> descriptor = ORB::create(); // use this if you are in OpenCV2 // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" ); // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" ); Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming"); //-- 第一步:检测 Oriented FAST 角点位置 detector->detect(img_1, keypoints_1); detector->detect(img_2, keypoints_2); //-- 第二步:根据角点位置计算 BRIEF 描述子 descriptor->compute(img_1, keypoints_1, descriptors_1); descriptor->compute(img_2, keypoints_2, descriptors_2); //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 vector<DMatch> match; //BFMatcher matcher ( NORM_HAMMING ); matcher->match(descriptors_1, descriptors_2, match); //-- 第四步:匹配点对筛选 double min_dist = 10000, max_dist = 0; //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 for (int i = 0; i < descriptors_1.rows; i++) { double dist = match[i].distance; if (dist < min_dist) min_dist = dist; if (dist > max_dist) max_dist = dist; } printf("-- Max dist : %f ", max_dist); printf("-- Min dist : %f ", min_dist); //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. for (int i = 0; i < descriptors_1.rows; i++) { if (match[i].distance <= max(2 * min_dist, 30.0)) { matches.push_back(match[i]); } } } Point2d pixel2cam(const Point2d &p, const Mat &K) { return Point2d ( (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0), (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1) ); } void pose_estimation_2d2d(std::vector<KeyPoint> keypoints_1, std::vector<KeyPoint> keypoints_2, std::vector<DMatch> matches, Mat &R, Mat &t) { // 相机内参,TUM Freiburg2 Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); //-- 把匹配点转换为vector<Point2f>的形式 vector<Point2f> points1; vector<Point2f> points2; for (int i = 0; i < (int) matches.size(); i++) { points1.push_back(keypoints_1[matches[i].queryIdx].pt); points2.push_back(keypoints_2[matches[i].trainIdx].pt); } //-- 计算基础矩阵 Mat fundamental_matrix; fundamental_matrix = findFundamentalMat(points1, points2, CV_FM_8POINT); cout << "fundamental_matrix is " << endl << fundamental_matrix << endl; //-- 计算本质矩阵 Point2d principal_point(325.1, 249.7); //相机光心, TUM dataset标定值 double focal_length = 521; //相机焦距, TUM dataset标定值 Mat essential_matrix; essential_matrix = findEssentialMat(points1, points2, focal_length, principal_point); cout << "essential_matrix is " << endl << essential_matrix << endl; //-- 计算单应矩阵 //-- 但是本例中场景不是平面,单应矩阵意义不大 Mat homography_matrix; homography_matrix = findHomography(points1, points2, RANSAC, 3); cout << "homography_matrix is " << endl << homography_matrix << endl; //-- 从本质矩阵中恢复旋转和平移信息. // 此函数仅在Opencv3中提供 recoverPose(essential_matrix, points1, points2, R, t, focal_length, principal_point); cout << "R is " << endl << R << endl; cout << "t is " << endl << t << endl; }
#include <iostream> #include <opencv2/opencv.hpp> // #include "extra.h" // used in opencv2 using namespace std; using namespace cv; void find_feature_matches( const Mat &img_1, const Mat &img_2, std::vector<KeyPoint> &keypoints_1, std::vector<KeyPoint> &keypoints_2, std::vector<DMatch> &matches); void pose_estimation_2d2d( const std::vector<KeyPoint> &keypoints_1, const std::vector<KeyPoint> &keypoints_2, const std::vector<DMatch> &matches, Mat &R, Mat &t); void triangulation( const vector<KeyPoint> &keypoint_1, const vector<KeyPoint> &keypoint_2, const std::vector<DMatch> &matches, const Mat &R, const Mat &t, vector<Point3d> &points ); /// 作图用 inline cv::Scalar get_color(float depth) { float up_th = 50, low_th = 10, th_range = up_th - low_th; if (depth > up_th) depth = up_th; if (depth < low_th) depth = low_th; return cv::Scalar(255 * depth / th_range, 0, 255 * (1 - depth / th_range)); } // 像素坐标转相机归一化坐标 Point2f pixel2cam(const Point2d &p, const Mat &K); int main(int argc, char **argv) { if (argc != 3) { cout << "usage: triangulation img1 img2" << endl; return 1; } //-- 读取图像 Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR); Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR); vector<KeyPoint> keypoints_1, keypoints_2; vector<DMatch> matches; find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches); cout << "一共找到了" << matches.size() << "组匹配点" << endl; //-- 估计两张图像间运动 Mat R, t; pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t); //-- 三角化 vector<Point3d> points; triangulation(keypoints_1, keypoints_2, matches, R, t, points); //-- 验证三角化点与特征点的重投影关系 Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); Mat img1_plot = img_1.clone(); Mat img2_plot = img_2.clone(); for (int i = 0; i < matches.size(); i++) { // 第一个图 float depth1 = points[i].z; cout << "depth: " << depth1 << endl; Point2d pt1_cam = pixel2cam(keypoints_1[matches[i].queryIdx].pt, K);//由匹配点的像素坐标得到相机坐标 cv::circle(img1_plot, keypoints_1[matches[i].queryIdx].pt, 2, get_color(depth1), 2);//画出匹配点,颜色由深度决定 // 第二个图 Mat pt2_trans = R * (Mat_<double>(3, 1) << points[i].x, points[i].y, points[i].z) + t; float depth2 = pt2_trans.at<double>(2, 0); cv::circle(img2_plot, keypoints_2[matches[i].trainIdx].pt, 2, get_color(depth2), 2); } cv::imshow("img 1", img1_plot); cv::imshow("img 2", img2_plot); cv::waitKey(); return 0; } void find_feature_matches(const Mat &img_1, const Mat &img_2, std::vector<KeyPoint> &keypoints_1, std::vector<KeyPoint> &keypoints_2, std::vector<DMatch> &matches) { //-- 初始化 Mat descriptors_1, descriptors_2; // used in OpenCV3 Ptr<FeatureDetector> detector = ORB::create(); Ptr<DescriptorExtractor> descriptor = ORB::create(); // use this if you are in OpenCV2 // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" ); // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" ); Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming"); //-- 第一步:检测 Oriented FAST 角点位置 detector->detect(img_1, keypoints_1); detector->detect(img_2, keypoints_2); //-- 第二步:根据角点位置计算 BRIEF 描述子 descriptor->compute(img_1, keypoints_1, descriptors_1); descriptor->compute(img_2, keypoints_2, descriptors_2); //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 vector<DMatch> match; // BFMatcher matcher ( NORM_HAMMING ); matcher->match(descriptors_1, descriptors_2, match); //-- 第四步:匹配点对筛选 double min_dist = 10000, max_dist = 0; //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 for (int i = 0; i < descriptors_1.rows; i++) { double dist = match[i].distance; if (dist < min_dist) min_dist = dist; if (dist > max_dist) max_dist = dist; } printf("-- Max dist : %f ", max_dist); printf("-- Min dist : %f ", min_dist); //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. for (int i = 0; i < descriptors_1.rows; i++) { if (match[i].distance <= max(2 * min_dist, 30.0)) { matches.push_back(match[i]); } } } void pose_estimation_2d2d( const std::vector<KeyPoint> &keypoints_1, const std::vector<KeyPoint> &keypoints_2, const std::vector<DMatch> &matches, Mat &R, Mat &t) { // 相机内参,TUM Freiburg2 Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); //-- 把匹配点转换为vector<Point2f>的形式 vector<Point2f> points1; vector<Point2f> points2; for (int i = 0; i < (int) matches.size(); i++) { points1.push_back(keypoints_1[matches[i].queryIdx].pt); points2.push_back(keypoints_2[matches[i].trainIdx].pt); } //-- 计算本质矩阵 Point2d principal_point(325.1, 249.7); //相机主点, TUM dataset标定值 int focal_length = 521; //相机焦距, TUM dataset标定值 Mat essential_matrix; essential_matrix = findEssentialMat(points1, points2, focal_length, principal_point); //-- 从本质矩阵中恢复旋转和平移信息. recoverPose(essential_matrix, points1, points2, R, t, focal_length, principal_point); } void triangulation( const vector<KeyPoint> &keypoint_1, const vector<KeyPoint> &keypoint_2, const std::vector<DMatch> &matches, const Mat &R, const Mat &t, vector<Point3d> &points) { Mat T1 = (Mat_<float>(3, 4) << 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0); Mat T2 = (Mat_<float>(3, 4) << R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2), t.at<double>(0, 0), R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2), t.at<double>(1, 0), R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2), t.at<double>(2, 0) ); Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); vector<Point2f> pts_1, pts_2; for (DMatch m:matches) { // 将像素坐标转换至相机坐标 pts_1.push_back(pixel2cam(keypoint_1[m.queryIdx].pt, K)); pts_2.push_back(pixel2cam(keypoint_2[m.trainIdx].pt, K)); } Mat pts_4d; cv::triangulatePoints(T1, T2, pts_1, pts_2, pts_4d); // 转换成非齐次坐标 for (int i = 0; i < pts_4d.cols; i++) { Mat x = pts_4d.col(i); x /= x.at<float>(3, 0); // 归一化 Point3d p( x.at<float>(0, 0), x.at<float>(1, 0), x.at<float>(2, 0) ); points.push_back(p); } } Point2f pixel2cam(const Point2d &p, const Mat &K) { return Point2f ( (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0), (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1) ); }