• 视觉里程计:2D-2D 对极几何、3D-2D PnP、3D-3D ICP


     

     参考链接:https://mp.weixin.qq.com/s/89IHjqnw-JJ1Ak_YjWdHvA

     

     

     

     

     

    #include <iostream>
    #include <opencv2/core/core.hpp>
    #include <opencv2/features2d/features2d.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/calib3d/calib3d.hpp>
    // #include "extra.h" // use this if in OpenCV2
    
    using namespace std;
    using namespace cv;
    
    /****************************************************
     * 本程序演示了如何使用2D-2D的特征匹配估计相机运动
     * **************************************************/
    
    void find_feature_matches(
      const Mat &img_1, const Mat &img_2,
      std::vector<KeyPoint> &keypoints_1,
      std::vector<KeyPoint> &keypoints_2,
      std::vector<DMatch> &matches);
    
    void pose_estimation_2d2d(
      std::vector<KeyPoint> keypoints_1,
      std::vector<KeyPoint> keypoints_2,
      std::vector<DMatch> matches,
      Mat &R, Mat &t);
    
    // 像素坐标转相机归一化坐标
    Point2d pixel2cam(const Point2d &p, const Mat &K);
    
    int main(int argc, char **argv) {
      if (argc != 3) {
        cout << "usage: pose_estimation_2d2d img1 img2" << endl;
        return 1;
      }
      //-- 读取图像
      Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
      Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);
      assert(img_1.data && img_2.data && "Can not load images!");
    
      vector<KeyPoint> keypoints_1, keypoints_2;
      vector<DMatch> matches;
      find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
      cout << "一共找到了" << matches.size() << "组匹配点" << endl;
    
      //-- 估计两张图像间运动
      Mat R, t;
      pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t);
    
      //-- 验证E=t^R*scale
      Mat t_x =
        (Mat_<double>(3, 3) << 0, -t.at<double>(2, 0), t.at<double>(1, 0),
          t.at<double>(2, 0), 0, -t.at<double>(0, 0),
          -t.at<double>(1, 0), t.at<double>(0, 0), 0);
    
      cout << "t^R=" << endl << t_x * R << endl;
    
      //-- 验证对极约束
      Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
      for (DMatch m: matches) {
        Point2d pt1 = pixel2cam(keypoints_1[m.queryIdx].pt, K);
        Mat y1 = (Mat_<double>(3, 1) << pt1.x, pt1.y, 1);
        Point2d pt2 = pixel2cam(keypoints_2[m.trainIdx].pt, K);
        Mat y2 = (Mat_<double>(3, 1) << pt2.x, pt2.y, 1);
        Mat d = y2.t() * t_x * R * y1;
        cout << "epipolar constraint = " << d << endl;
      }
      return 0;
    }
    
    void find_feature_matches(const Mat &img_1, const Mat &img_2,
                              std::vector<KeyPoint> &keypoints_1,
                              std::vector<KeyPoint> &keypoints_2,
                              std::vector<DMatch> &matches) {
      //-- 初始化
      Mat descriptors_1, descriptors_2;
      // used in OpenCV3
      Ptr<FeatureDetector> detector = ORB::create();
      Ptr<DescriptorExtractor> descriptor = ORB::create();
      // use this if you are in OpenCV2
      // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
      // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
      Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
      //-- 第一步:检测 Oriented FAST 角点位置
      detector->detect(img_1, keypoints_1);
      detector->detect(img_2, keypoints_2);
    
      //-- 第二步:根据角点位置计算 BRIEF 描述子
      descriptor->compute(img_1, keypoints_1, descriptors_1);
      descriptor->compute(img_2, keypoints_2, descriptors_2);
    
      //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
      vector<DMatch> match;
      //BFMatcher matcher ( NORM_HAMMING );
      matcher->match(descriptors_1, descriptors_2, match);
    
      //-- 第四步:匹配点对筛选
      double min_dist = 10000, max_dist = 0;
    
      //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
      for (int i = 0; i < descriptors_1.rows; i++) {
        double dist = match[i].distance;
        if (dist < min_dist) min_dist = dist;
        if (dist > max_dist) max_dist = dist;
      }
    
      printf("-- Max dist : %f 
    ", max_dist);
      printf("-- Min dist : %f 
    ", min_dist);
    
      //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
      for (int i = 0; i < descriptors_1.rows; i++) {
        if (match[i].distance <= max(2 * min_dist, 30.0)) {
          matches.push_back(match[i]);
        }
      }
    }
    
    Point2d pixel2cam(const Point2d &p, const Mat &K) {
      return Point2d
        (
          (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
          (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
        );
    }
    
    void pose_estimation_2d2d(std::vector<KeyPoint> keypoints_1,
                              std::vector<KeyPoint> keypoints_2,
                              std::vector<DMatch> matches,
                              Mat &R, Mat &t) {
      // 相机内参,TUM Freiburg2
      Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
    
      //-- 把匹配点转换为vector<Point2f>的形式
      vector<Point2f> points1;
      vector<Point2f> points2;
    
      for (int i = 0; i < (int) matches.size(); i++) {
        points1.push_back(keypoints_1[matches[i].queryIdx].pt);
        points2.push_back(keypoints_2[matches[i].trainIdx].pt);
      }
    
      //-- 计算基础矩阵
      Mat fundamental_matrix;
      fundamental_matrix = findFundamentalMat(points1, points2, CV_FM_8POINT);
      cout << "fundamental_matrix is " << endl << fundamental_matrix << endl;
    
      //-- 计算本质矩阵
      Point2d principal_point(325.1, 249.7);  //相机光心, TUM dataset标定值
      double focal_length = 521;      //相机焦距, TUM dataset标定值
      Mat essential_matrix;
      essential_matrix = findEssentialMat(points1, points2, focal_length, principal_point);
      cout << "essential_matrix is " << endl << essential_matrix << endl;
    
      //-- 计算单应矩阵
      //-- 但是本例中场景不是平面,单应矩阵意义不大
      Mat homography_matrix;
      homography_matrix = findHomography(points1, points2, RANSAC, 3);
      cout << "homography_matrix is " << endl << homography_matrix << endl;
    
      //-- 从本质矩阵中恢复旋转和平移信息.
      // 此函数仅在Opencv3中提供
      recoverPose(essential_matrix, points1, points2, R, t, focal_length, principal_point);
      cout << "R is " << endl << R << endl;
      cout << "t is " << endl << t << endl;
    
    }

     

     

     

     

     

     

     

     

    #include <iostream>
    #include <opencv2/opencv.hpp>
    // #include "extra.h" // used in opencv2
    using namespace std;
    using namespace cv;
    
    void find_feature_matches(
      const Mat &img_1, const Mat &img_2,
      std::vector<KeyPoint> &keypoints_1,
      std::vector<KeyPoint> &keypoints_2,
      std::vector<DMatch> &matches);
    
    void pose_estimation_2d2d(
      const std::vector<KeyPoint> &keypoints_1,
      const std::vector<KeyPoint> &keypoints_2,
      const std::vector<DMatch> &matches,
      Mat &R, Mat &t);
    
    void triangulation(
      const vector<KeyPoint> &keypoint_1,
      const vector<KeyPoint> &keypoint_2,
      const std::vector<DMatch> &matches,
      const Mat &R, const Mat &t,
      vector<Point3d> &points
    );
    
    /// 作图用
    inline cv::Scalar get_color(float depth) {
      float up_th = 50, low_th = 10, th_range = up_th - low_th;
      if (depth > up_th) depth = up_th;
      if (depth < low_th) depth = low_th;
      return cv::Scalar(255 * depth / th_range, 0, 255 * (1 - depth / th_range));
    }
    
    // 像素坐标转相机归一化坐标
    Point2f pixel2cam(const Point2d &p, const Mat &K);
    
    int main(int argc, char **argv) {
      if (argc != 3) {
        cout << "usage: triangulation img1 img2" << endl;
        return 1;
      }
      //-- 读取图像
      Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
      Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);
    
      vector<KeyPoint> keypoints_1, keypoints_2;
      vector<DMatch> matches;
      find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
      cout << "一共找到了" << matches.size() << "组匹配点" << endl;
    
      //-- 估计两张图像间运动
      Mat R, t;
      pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t);
    
      //-- 三角化
      vector<Point3d> points;
      triangulation(keypoints_1, keypoints_2, matches, R, t, points);
    
      //-- 验证三角化点与特征点的重投影关系
      Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
      Mat img1_plot = img_1.clone();
      Mat img2_plot = img_2.clone();
      for (int i = 0; i < matches.size(); i++) {
        // 第一个图
        float depth1 = points[i].z;
        cout << "depth: " << depth1 << endl;
        Point2d pt1_cam = pixel2cam(keypoints_1[matches[i].queryIdx].pt, K);//由匹配点的像素坐标得到相机坐标
        cv::circle(img1_plot, keypoints_1[matches[i].queryIdx].pt, 2, get_color(depth1), 2);//画出匹配点,颜色由深度决定
    
        // 第二个图
        Mat pt2_trans = R * (Mat_<double>(3, 1) << points[i].x, points[i].y, points[i].z) + t;
        float depth2 = pt2_trans.at<double>(2, 0);
        cv::circle(img2_plot, keypoints_2[matches[i].trainIdx].pt, 2, get_color(depth2), 2);
      }
      cv::imshow("img 1", img1_plot);
      cv::imshow("img 2", img2_plot);
      cv::waitKey();
    
      return 0;
    }
    
    void find_feature_matches(const Mat &img_1, const Mat &img_2,
                              std::vector<KeyPoint> &keypoints_1,
                              std::vector<KeyPoint> &keypoints_2,
                              std::vector<DMatch> &matches) {
      //-- 初始化
      Mat descriptors_1, descriptors_2;
      // used in OpenCV3
      Ptr<FeatureDetector> detector = ORB::create();
      Ptr<DescriptorExtractor> descriptor = ORB::create();
      // use this if you are in OpenCV2
      // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
      // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
      Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
      //-- 第一步:检测 Oriented FAST 角点位置
      detector->detect(img_1, keypoints_1);
      detector->detect(img_2, keypoints_2);
    
      //-- 第二步:根据角点位置计算 BRIEF 描述子
      descriptor->compute(img_1, keypoints_1, descriptors_1);
      descriptor->compute(img_2, keypoints_2, descriptors_2);
    
      //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
      vector<DMatch> match;
      // BFMatcher matcher ( NORM_HAMMING );
      matcher->match(descriptors_1, descriptors_2, match);
    
      //-- 第四步:匹配点对筛选
      double min_dist = 10000, max_dist = 0;
    
      //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
      for (int i = 0; i < descriptors_1.rows; i++) {
        double dist = match[i].distance;
        if (dist < min_dist) min_dist = dist;
        if (dist > max_dist) max_dist = dist;
      }
    
      printf("-- Max dist : %f 
    ", max_dist);
      printf("-- Min dist : %f 
    ", min_dist);
    
      //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
      for (int i = 0; i < descriptors_1.rows; i++) {
        if (match[i].distance <= max(2 * min_dist, 30.0)) {
          matches.push_back(match[i]);
        }
      }
    }
    
    void pose_estimation_2d2d(
      const std::vector<KeyPoint> &keypoints_1,
      const std::vector<KeyPoint> &keypoints_2,
      const std::vector<DMatch> &matches,
      Mat &R, Mat &t) {
      // 相机内参,TUM Freiburg2
      Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
    
      //-- 把匹配点转换为vector<Point2f>的形式
      vector<Point2f> points1;
      vector<Point2f> points2;
    
      for (int i = 0; i < (int) matches.size(); i++) {
        points1.push_back(keypoints_1[matches[i].queryIdx].pt);
        points2.push_back(keypoints_2[matches[i].trainIdx].pt);
      }
    
      //-- 计算本质矩阵
      Point2d principal_point(325.1, 249.7);        //相机主点, TUM dataset标定值
      int focal_length = 521;            //相机焦距, TUM dataset标定值
      Mat essential_matrix;
      essential_matrix = findEssentialMat(points1, points2, focal_length, principal_point);
    
      //-- 从本质矩阵中恢复旋转和平移信息.
      recoverPose(essential_matrix, points1, points2, R, t, focal_length, principal_point);
    }
    
    void triangulation(
      const vector<KeyPoint> &keypoint_1,
      const vector<KeyPoint> &keypoint_2,
      const std::vector<DMatch> &matches,
      const Mat &R, const Mat &t,
      vector<Point3d> &points) {
      Mat T1 = (Mat_<float>(3, 4) <<
        1, 0, 0, 0,
        0, 1, 0, 0,
        0, 0, 1, 0);
      Mat T2 = (Mat_<float>(3, 4) <<
        R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2), t.at<double>(0, 0),
        R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2), t.at<double>(1, 0),
        R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2), t.at<double>(2, 0)
      );
    
      Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
      vector<Point2f> pts_1, pts_2;
      for (DMatch m:matches) {
        // 将像素坐标转换至相机坐标
        pts_1.push_back(pixel2cam(keypoint_1[m.queryIdx].pt, K));
        pts_2.push_back(pixel2cam(keypoint_2[m.trainIdx].pt, K));
      }
    
      Mat pts_4d;
      cv::triangulatePoints(T1, T2, pts_1, pts_2, pts_4d);
    
      // 转换成非齐次坐标
      for (int i = 0; i < pts_4d.cols; i++) {
        Mat x = pts_4d.col(i);
        x /= x.at<float>(3, 0); // 归一化
        Point3d p(
          x.at<float>(0, 0),
          x.at<float>(1, 0),
          x.at<float>(2, 0)
        );
        points.push_back(p);
      }
    }
    
    Point2f pixel2cam(const Point2d &p, const Mat &K) {
      return Point2f
        (
          (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
          (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
        );
    }

     

     

     

     

     

     

     

     

     

  • 相关阅读:
    轮廓 | outline (Basic User Interface)
    转换 | CSS Transitions (Animations & Transitions)
    越线 | line-break (Text)
    贴士和技巧 | CSS Animations: Tips (Animations & Transitions)
    负 | @counter-style.negative (Counter Styles)
    调整 | resize (Basic User Interface)
    再见乱码:5分钟读懂MySQL字符集设置
    git
    Python 内存&函数调用关系图
    Python 笔记
  • 原文地址:https://www.cnblogs.com/long5683/p/11992551.html
Copyright © 2020-2023  润新知