• 批量状态估计和非线性优化


     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    #include <iostream>
    #include <chrono>
    #include <opencv2/opencv.hpp>
    #include <Eigen/Core>
    #include <Eigen/Dense>
    
    using namespace std;
    using namespace Eigen;
    
    int main(int argc, char **argv) {
      double ar = 1.0, br = 2.0, cr = 1.0;         // 真实参数值
      double ae = 2.0, be = -1.0, ce = 5.0;        // 估计参数值初始值
      int N = 100;                                 // 数据点
      double w_sigma = 2.0;                        // 噪声Sigma值
      double inv_sigma = 1.0 / w_sigma;
      cv::RNG rng;                                 // OpenCV随机数产生器
    
      vector<double> x_data, y_data;      // 真实数据
      for (int i = 0; i < N; i++) {       //生成数据
        double x = i / 100.0;
        x_data.push_back(x);
        y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
      }
    
      // 开始Gauss-Newton迭代
      int iterations = 1000;    // 迭代次数
      double cost = 0, lastCost = 0;  // 本次迭代的cost和上一次迭代的cost
    
      chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
      for (int iter = 0; iter < iterations; iter++) {
    
        Matrix3d H = Matrix3d::Zero();             // Hessian=J*J^T  in Gauss-Newton
        Vector3d b = Vector3d::Zero();             // bias 书本中的g(x)
        cost = 0;
    
        for (int i = 0; i < N; i++) {
          double xi = x_data[i], yi = y_data[i];  // 第i个数据点
          double error = yi - exp(ae * xi * xi + be * xi + ce);
          Vector3d J; // 雅可比矩阵
          J[0] = -xi * xi * exp(ae * xi * xi + be * xi + ce);  // de/da
          J[1] = -xi * exp(ae * xi * xi + be * xi + ce);  // de/db
          J[2] = -exp(ae * xi * xi + be * xi + ce);  // de/dc
    
    //      H += inv_sigma * inv_sigma * J * J.transpose();//不知道为什么要乘inv_sigma * inv_sigma
    //      b += -inv_sigma * inv_sigma * error * J;     //两边同乘一个不为0的常数,实际对结果没有影响
            H += J * J.transpose();
            b += -error * J;
          cost += error * error;
        }
    
        // 求解线性方程 Hx=b
        Vector3d dx = H.ldlt().solve(b);
        if (isnan(dx[0])) {
          cout << "result is nan!" << endl;
          break;
        }
    
        if (iter > 0 && cost >= lastCost) {
          cout << "cost: " << cost << ">= last cost: " << lastCost << ", break." << endl;
          break;
        }
    
        ae += dx[0];
        be += dx[1];
        ce += dx[2];
    
        lastCost = cost;
    
        cout << "total cost: " << cost << ", 		update: " << dx.transpose() <<
             "		estimated params: " << ae << "," << be << "," << ce << endl;
      }
    
      chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
      chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
      cout << "solve time cost = " << time_used.count() << " seconds. " << endl;
    
      cout << "estimated abc = " << ae << ", " << be << ", " << ce << endl;
      return 0;
    }

     

     

     

     

  • 相关阅读:
    GCD (hdu 5726)
    1092
    D. Puzzles(Codeforces Round #362 (Div. 2))
    A. Lorenzo Von Matterhorn
    Polyomino Composer(UVA12291)
    Optimal Symmetric Paths(UVA12295)
    菜鸟物流的运输网络(计蒜客复赛F)
    1193
    1119
    1374
  • 原文地址:https://www.cnblogs.com/long5683/p/11983181.html
Copyright © 2020-2023  润新知