• STL sort


       1: template<class _RanIt> inline
       2:     void sort(_RanIt _First, _RanIt _Last)
       3: {    // order [_First, _Last), using operator<
       4:     _DEBUG_RANGE(_First, _Last);
       5:     _Sort(_CHECKED_BASE(_First), _CHECKED_BASE(_Last), _Last - _First);
       6: }
       1: template<class _RanIt,
       2:     class _Diff,
       3:     class _Pr> inline
       4:     void _Sort(_RanIt _First, _RanIt _Last, _Diff _Ideal, _Pr _Pred)
       5:     {    
       6:     // order [_First, _Last), using _Pred
       7:     _Diff _Count;
       8:     for (; _ISORT_MAX < (_Count = _Last - _First) && 0 < _Ideal; )
       9:     {    
      10:         // divide and conquer by quicksort
      11:  
      12:         // First, we get the middle position, divide the set to two part
      13:         pair<_RanIt, _RanIt> _Mid =
      14:             _Unguarded_partition(_First, _Last, _Pred);
      15:  
      16:         
      17:         _Ideal /= 2, _Ideal += _Ideal / 2;    // allow 1.5 log2(N) divisions
      18:  
      19:         if (_Mid.first - _First < _Last - _Mid.second)    // loop on larger half
      20:             _Sort(_First, _Mid.first, _Ideal, _Pred), _First = _Mid.second;
      21:         else
      22:             _Sort(_Mid.second, _Last, _Ideal, _Pred), _Last = _Mid.first;
      23:     }
      24:  
      25:     if (_ISORT_MAX < _Count)
      26:     {    
      27:         // heap sort if too many divisions
      28:         std::make_heap(_First, _Last, _Pred);
      29:         std::sort_heap(_First, _Last, _Pred);
      30:     }
      31:     else if (1 < _Count)
      32:         _Insertion_sort(_First, _Last, _Pred);    // small, insertion sort
      33:     }

    其中

       1: // COMMON SORT PARAMETERS
       2: const int _ISORT_MAX = 32;    // maximum size for insertion sort

    1. _ISORT_MAX用来控制能够conquer的集合的大小,如果集合已经足够小了,比如这里集合中元素的个数小于32个,则可以使用Insertion_Sort来进行排序操作了;

    2. _Ideal用来控制(Divide-and-Conquer)递归的层次,

    相当 (N * 1.5_Ideal) >> (_Ideal) 次就达到了0,即2_Ideal == N*1.5_Ideal,

    即_Ideal = log4/3N, 但是实际上由于在“除2”操作过程中的低位损耗,_Ideal的值会比公式计算出来的偏小,不过原comment给出的1.5 log2(N)是不准确的,以下做了一些对比

       1: int x = 1024;
       2:     int y = 0;
       3:     while (x > 0)
       4:     {
       5:         x /= 2, x += x / 2;
       6:         printf("0x%08X
    ", x);
       7:         y++;
       8:     }
    N 1.5 log2(N) log4/3N 程序计算出的值y
    1024 15 24 21

    言归正传,当_Ideal的层次太深的时候,for循环结束

    3. 如果不是因为分块已经足够小了而结束的,就调用Heap_Sort进行堆排序

    4. 如果分块已经都足够小了,就进行Insertion_Sort排序

  • 相关阅读:
    消息中间件
    线程以及多线程
    锁以及分布式锁
    并发以及高并发
    SpringBoot + SpringCloud学习踩坑实记
    公众号笔记: 2018年12月
    浅谈final关键字的用法
    浅谈static关键字的四种用法
    Linux常用的一些命令
    HTTPS
  • 原文地址:https://www.cnblogs.com/long123king/p/3487753.html
Copyright © 2020-2023  润新知