把有单点修改和查询的点离散进一个数组,然后单点修改直接改,记录一个修改时间t,维护一个sm表示这些离散的点的和,val表示出了离散点其他点的值,因为都是一样的所以只记录这一个值即可,记录ljlc为加法乘法的lazytag,整体加整体乘的时候像线段树一样改smljlc,还有修改val,整体赋值的时候把valsmljlc都初始化,记录一个赋值时间ti
单点查询的时候如果这个点的修改时间比当前赋值时间早就直接val,否则是数组值和lazytag操作一下,整体查询直接sm+val*has即可
那个求逆元本来应该线性预处理的,但是我看快速幂跑过了就没管(……
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<map>
using namespace std;
const int N=200005,mod=1e7+19;
int n,m,q,o[N],p[N],a[N],b[N],g[N],tot,has,ti,t[N];
long long v[N],d[N],sm,ans,lj,lc=1,val;//,r[N];
map<int,int>mp;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
long long ksm(long long a,long long b)
{
long long r=1;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
int main()
{
n=read(),q=read();
for(int i=1;i<=q;i++)
{
o[i]=read();
if(o[i]==1)
p[i]=read(),v[i]=read(),g[++tot]=p[i];
else if(o[i]==5)
p[i]=read(),g[++tot]=p[i];
else if(o[i]!=6)
v[i]=read();
}
m=read();
for(int i=1;i<=m;i++)
a[i]=read(),b[i]=read();
sort(g+1,g+1+tot);
for(int i=1;i<=tot;i++)
if(i==1||g[i]!=g[i-1])
mp[g[i]]=++has;
for(int i=1;i<=q;i++)
p[i]=mp[p[i]];
for(int i=1;i<=m;i++)
for(int j=1;j<=q;j++)
{
int w=(a[i]+1ll*j*b[i]%q)%q+1;
if(o[w]==1)
{
sm=(sm-((t[p[w]]<ti)?val:(d[p[w]]*lc+lj))+v[w])%mod;
d[p[w]]=(v[w]-lj)*ksm(lc,mod-2)%mod;
t[p[w]]=(i-1)*q+j;
}
else if(o[w]==2)
{
val=(val+v[w])%mod;
sm=(sm+v[w]*has)%mod;
lj=(lj+v[w])%mod;
}
else if(o[w]==3)
{
val=val*v[w]%mod;
sm=sm*v[w]%mod;
lc=lc*v[w]%mod;
lj=lj*v[w]%mod;
}
else if(o[w]==4)
{
val=v[w],lj==0,lc=1;
ti=(i-1)*q+j;
sm=v[w]*has%mod;
}
else if(o[w]==5)
ans=(ans+((t[p[w]]<ti)?val:(d[p[w]]*lc+lj)%mod))%mod;
else
ans=(ans+sm+val*(n-has))%mod;
}
printf("%lld
",(ans+mod)%mod);
return 0;
}