传送:https://vjudge.net/problem/TopCoder-14084
只是利用了笛卡尔树的性质,设f[i][j]为区间[i,j]的贡献,然后枚举中间最大的点k来转移,首先是两侧小区间贡献的,f[i][k-1]*fac[j-k]+f[k+1][j]*fac[k-i],大概是方案数相乘的形式
然后考虑中间点的儿子的贡献,是( fac[k-i-1]|*fac[j-k-1]|*sum_{l=i}{k-1}sum_{r=k+1}{j}r-l ),前面表示两侧任意排列,后面两个求和可以化简
然后最后整体乘c[j-i][k-i]表示选出一部分作为左儿子
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
class BearPermutations2
{
private:
long long mod,f[105][105],c[105][105],fac[105];
public:
long long clc(long long l,long long r)
{
return (l+r)*(r-l+1)/2%mod;
}
int getSum(int n,int MOD)
{
memset(f,0,sizeof(f));
memset(c,0,sizeof(c));
mod=MOD;
fac[0]=1;
for(int i=1;i<=n;i++)
fac[i]=fac[i-1]*i%mod;
c[0][0]=1;
for(int i=1;i<=n;i++)
{
c[i][0]=1;
for(int j=1;j<=i;j++)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
}
for(int i=n;i>=1;i--)
for(int j=i;j<=n;j++)
for(int k=i;k<=j;k++)
{
if(k!=i)
f[i][j]=(f[i][j]+c[j-i][k-i]*f[i][k-1]%mod*fac[j-k]%mod)%mod;
if(k!=j)
f[i][j]=(f[i][j]+c[j-i][k-i]*f[k+1][j]%mod*fac[k-i]%mod)%mod;
if(k!=i&&k!=j)
f[i][j]=(f[i][j]+c[j-i][k-i]*fac[k-i-1]%mod*fac[j-k-1]%mod*(clc(k+1,j)*(k-i)%mod-clc(i,k-1)*(j-k)%mod+mod)%mod)%mod;
}
return (f[1][n]+mod)%mod;
}
};