这个东西卡常……预处理的时候要先把i%j,i/j都用变量表示,还要把%2变成&1……
首先每一堆都是不相关子游戏,所以对于每一堆求sg即可
考虑暴力枚举石子数i,分割块数j,分解成子问题求xor和(其实就是根据i/j,i/j+1的个数的奇偶性xor一下即可),然后对sg[i]暴力mex,这样是n^2的
考虑优化,注意到一共只有根号级别的i/j,所以根据这个分块,上面的xor和是跟距个数奇偶性,而同样i/j的奇偶性只有两种(因为总个数相同),也就是i%j和i%(j+2),j-(i%j)和(j+2)-i%(j+2)的奇偶性是一样的
然后对每个询问求sg的xor和即可
#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005;
int T,f,n,m=100000,sg[N],v[N],ti,ans;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int main()
{
T=read(),f=read();
for(int i=f;i<=m;i++)
{
ti++;
for(int j=2,la,nw,x,y;j<=i;j=la+1)
{
nw=0,x=i%j,y=i/j,la=min(i,i/y);
if(x&1)
nw^=sg[y+1];
if((j-x)&1)
nw^=sg[y];
v[nw]=ti;
if(la+1>j+1)
{
nw=0,x=i%(j+1),y=i/(j+1);
if(x&1)
nw^=sg[y+1];
if(((j+1)-x)&1)
nw^=sg[y];
v[nw]=ti;
}
}
for(int j=0;j<=m;j++)
if(v[j]!=ti)
{
sg[i]=j;
break;
}
}
while(T--)
{
n=read(),ans=0;
for(int i=1;i<=n;i++)
ans^=sg[read()];
ans?printf("1 "):printf("0 ");
}
return 0;
}