• 洛谷 P2831 愤怒的小鸟


    思路

    未优化

    状压( ext{DP})

    (nleq 18),不是暴搜就是状压,因为我(jio)得状压会比较好理解,所以就写一篇状压的题解叭

    首先我们要预处理出经过任意两点的抛物线可以击中的小猪有哪些,可以用(line[i][j])来表示经过(i,j)的抛物线经过的小猪的集合,集合用二进制数来表示

    • 这里有一个小问题就是如何求抛物线(y=ax^2+bx)中的(a,b)

      假设目前的抛物线经过((x_1,y_1))((x_2,y_2))两点,已知(x>0),那么有

      [y_1=ax_1^2+bx_1 ]

      [y_2=ax_2^2+bx_2 ]

      [ax_1+b=frac{y_1}{x_1} ]

      [ax_2+b=frac{y_2}{x_2} ]

      两式做差得

      [a(x_1-x_2)=frac{y_1}{x_1} - frac{y_2}{x_2} ]

      所以

      (a=frac{frac{y_1}{x_1} - frac{y_2}{x_2}}{(x_1-x_2)})

      (b=frac{y_1}{x_1}-a*x_1)

    处理完之后就要想一想如何( ext{DP})

    我们设(dp[s])表示消灭集合(s)内所有小猪所用的最少的小鸟数

    显然(dp[0]=0),因为没有猪当然用不到鸟

    假设当前的状态为(s),抛物线为经过(i,j)点的抛物线,这条抛物线打掉的小猪的状态为(line[i][j]),那么有

    [dp[s|line[i][j]] = min(dp[s|line[i][j]],dp[s] + 1) ]

    其中(s|line[i][j])表示当前状态(s)在增加了经过(i,j)点的这条抛物线之后能打到的小猪的集合,显然要从(dp[s|line[i][j]])(dp[s]+1)中取最小

    时间复杂度(O(Tn^22^n))O(能过才怪),在洛谷上吸氧((O2))可以过

    优化

    随意选择(s)内的一只小猪(j),那么(j)最后一定会被一只小鸟消灭,所以我们固定住这只小猪(j),只枚举(k)转移

    更详细见AThousandSuns的题解

    时间复杂度(O(Tn2^n)),稳了

    代码

    未优化

    /*
    Author:loceaner
    */
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define eps (1e-6)
    using namespace std;
    
    const int A = 5e5 + 11;
    const int B = 1e6 + 11;
    const int mod = 1e9 + 7;
    const int inf = 0x3f3f3f3f;
    
    inline int read() {
    	char c = getchar(); int x = 0, f = 1;
    	for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
    	for( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
    	return x * f;
    }
    
    int n, m, num, line[20][20], dp[B];
    struct Pig { double x, y; } p[A]; //猪猪结构体 
    
    bool cmp(Pig a, Pig b) { //根据坐标排序猪猪 
    	return (a.x != b.x) ? (a.x < b.x) : (a.y < b.y);
    } 
    
    struct Line { //抛物线结构体,包含ax^2+bx中的a和b 
    	double a, b;
    	bool judge(Pig qwq) { //判断一个点是否在这个抛物线上 
    		double val = a * qwq.x * qwq.x + b * qwq.x, Y = qwq.y;
    		return ((val - Y) >= -eps && (val - Y) <= eps); 
    	}
    };
    
    inline Line get(Pig a, Pig b) { //已知两点坐标,求这两点所处的抛物线
    	//初中知识,推导见思路 
    	Line ans;
    	ans.a = (a.y / a.x - b.y / b.x) / (a.x - b.x);
    	ans.b = (a.y / a.x - ans.a * a.x);
    	return ans;	
    }
    
    int main() {
    	int T = read();
    	while (T--) {
    		n = read(), m = read();
    		memset(line, 0, sizeof(line)); //多测不清空,爆零两行泪 
    		memset(dp, 0x3f, sizeof(dp));
    		for (int i = 1; i <= n; i++) scanf("%lf%lf", &p[i].x, &p[i].y);
    		sort(p + 1, p + 1 + n, cmp); //排序猪猪 
    		for (int i = 1; i <= n; i++) line[i][i] = 1 << (i - 1); 
    		//处理只经过一个点的抛物线,不加就会人没了…… 
    		for (int i = 1; i <= n; i++) //预处理出所有抛物线 
    			for (int j = 1; j < i; j++) {
    				Line now = get(p[i], p[j]);
    				if (now.a >= 0) continue;
    				for (int k = 1; k <= n; k++) //line[i][j]抛物线能经过的猪猪集合 
    					if (now.judge(p[k])) line[i][j] |= 1 << (k - 1);
    				line[j][i] = line[i][j];
    			}
    		int U = (1 << n) - 1; //全集 
    		dp[0] = 0; //没猪当然是0 
    		for (int i = 1; i <= n; i++) //快乐地DP吧! 
    			for (int j = 1; j <= n; j++) 
    				for (int k = 0; k <= U; k++) 
    					dp[k | line[i][j]] = min(dp[k | line[i][j]], dp[k] + 1);
    		cout << dp[U] << '
    ';
    	} 
    	return 0;
    }
    

    优化

    /*
    Author:loceaner
    */
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define eps (1e-6)
    using namespace std;
    
    const int A = 5e5 + 11;
    const int B = 1e6 + 11;
    const int mod = 1e9 + 7;
    const int inf = 0x3f3f3f3f;
    
    inline int read() {
    	char c = getchar(); int x = 0, f = 1;
    	for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
    	for( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
    	return x * f;
    }
    
    int n, m, num, line[20][20], dp[B], must[B];
    struct Pig { double x, y; } p[A];
    
    bool cmp(Pig a, Pig b) {
    	return (a.x != b.x) ? (a.x < b.x) : (a.y < b.y);
    } 
    
    struct Line {
    	double a, b;
    	bool judge(Pig qwq) {
    		double val = a * qwq.x * qwq.x + b * qwq.x, Y = qwq.y;
    		return ((val - Y) >= -eps && (val - Y) <= eps); 
    	}
    };
    
    inline Line get(Pig a, Pig b) {
    	Line ans;
    	ans.a = (a.y / a.x - b.y / b.x) / (a.x - b.x);
    	ans.b = (a.y / a.x - ans.a * a.x);
    	return ans;	
    }
    
    int main() {
    	for (int i = 0; i < (1 << 18); i++) {
    		int j = 1;
    		for (; j <= 18 && i & (1 << (j - 1)); j++);
    		must[i] = j;
    	}
    	int T = read();
    	while (T--) {
    		num = 0;
    		n = read(), m = read();
    		memset(line, 0, sizeof(line)); //多测不清空,爆零两行泪 
    		memset(dp, 0x3f, sizeof(dp));
    		for (int i = 1; i <= n; i++) scanf("%lf%lf", &p[i].x, &p[i].y);
    		sort(p + 1, p + 1 + n, cmp);
    //		for (int i = 1; i <= n; i++) line[i][i] = 1 << (i - 1);
    		//因为下面枚举must[i]的时候就是枚举的这个,所以就不需要了 
    		for (int i = 1; i <= n; i++) 
    			for (int j = 1; j < i; j++) {
    				Line now = get(p[i], p[j]);
    				if (now.a >= 0) continue;
    				for (int k = 1; k <= n; k++) 
    					if (now.judge(p[k])) line[i][j] |= 1 << (k - 1);
    				line[j][i] = line[i][j];
    			}
    		int U = (1 << n) - 1;
    		dp[0] = 0;
    		for (int i = 0; i <= U; i++) {
    			int j = must[i];
    			dp[i | (1 << (j - 1))] = min(dp[i | (1 << (j - 1))], dp[i] + 1); //单独处理 
    			for (int k = 1; k <= n; k++) 
    				dp[i | line[j][k]] = min(dp[i | line[j][k]], dp[i] + 1);
    		}
    		cout << dp[U] << '
    ';
    	} 
    	return 0;
    }
    
  • 相关阅读:
    (数据科学学习手札109)Python+Dash快速web应用开发——静态部件篇(中)
    (数据科学学习手札107)在Python中利用funct实现链式风格编程
    (数据科学学习手札106)Python+Dash快速web应用开发——回调交互篇(下)
    妙啊,速来get这9个jupyter实用技巧
    (数据科学学习手札105)Python+Dash快速web应用开发——回调交互篇(中)
    (在模仿中精进数据可视化07)星球研究所大坝分布可视化
    (数据科学学习手札104)Python+Dash快速web应用开发——回调交互篇(上)
    基于 abp vNext 的快速开发模板
    JMeter四种参数化方式
    Python设计模式知多少
  • 原文地址:https://www.cnblogs.com/loceaner/p/13151603.html
Copyright © 2020-2023  润新知